Overview and Recent Development

IVEM-TANDEM FACILITY

Wei-Ying Chen, Dzmitry Harbaruk, Peter Baldo

Argonne National Laboratory

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

NSUF Program Review Meeting, Apr-18-2024

Outline

Specification of in-situ ion irradiation in

IVEM

- Irradiation condition
- TEM holders
- Microscope and Imaging system
- Capability highlights
 - Implementation of computer vision for analyzing in-situ data
 - Irradiation experiment with strain/stress

Accelerators

Dual ion beam in-situ irradiation

- 500 kV NEC Ion Implanter
 - Max. beam energy: 1 MeV
 - Dose rate: 10^{-5} to 10^{-3} dpa/s
 - Ion source: Danfysik 911
 - Ions include H, inert gases, and many elements from Al to Au
- 20 kV Helium implanter
 - Max. beam energy: 20 keV
 - Dose rate: up to a few %He/hr
 - ions: He

2 MV Tandem

- Max. beam energy 5 MeV
- Dose rate: <10⁻⁴ dpa/s (<u>in TEM</u>)
- Ion source: SNICS (Alphatross)
- Ion types: Fe, Ni, Au, Si, etc. (H, He)

H-9000NAR TEM

- Ion and electron beam angle, 30° allowing for real-time imaging
- Dual-beam irradiation capability
- LaB₆ filament, high current, high brightness, excellent for real-time imaging
- Electron energies, 100-300 keV,
- Minimum Spot Size: 25 nm
- Point resolution: 0.25 nm at 300 keV
- Gatan OneView camera enabling Video recording up to 313 fps
- Vacuum: 5x10⁻⁸ to 4x10⁻⁷ torr
- Bruker Xflash 6160 EDS detector

TEM holders

Heating (20 to 1100°C)	 Gatan High temperature (20-800°C), double tilt (±40°, ±20°) Gatan High temperature (20-1100°C), single tilt (±40°)
Cooling (20 to 300 K)	- Gatan Low temperature, double tilt (±40°, ±20°)
Straining (100 K to 400°C)	 Gatan Straining, high temperature (20-400°C), single tilt (±40°) Gatan Straining, low temperature (100-300°K), single tilt (±40°) Bruker picoindenter PI95 (20°C) - New
Corrosion	 Environmental Cell TEM Stage: Environmental chamber (20-300°C) TEM stage (20 - 700°C)
Tomography	- Gatan tri-axes tomography holder

Bubble-loop complex Ni *in-situ* irradiated with 16 keV He ions

W-Y. Chen and M. Li, J Nucl. Mater. 558 (2022) 153342

COMPUTER VISION FOR ANALYZING IN-SITU DATA

Penn State University (A. Motta) Grain growth of nanocrystalline UO₂

X. Xu, et al., J Nucl. Mater. 588 (2024) 154813

Purdue University (X. Zhang) Voids Stability under irradiation

M. Nasim et al. J Nucl. Mater. 574 (2023) 154189

University of Connecticut (Y. Zhu) Stability of vacancy clusters

R. Sainju et al. Sci. Rep. 12 (2022) 15705

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

USING AUTOMATIC DETECTION AND TRACKING TO MEASURE SIZE-DEPENDENT STABILITY AND MOBILITY OF VOIDS UNDER IN-SITU OBSERVATION

Ni under in-situ 1 MeV Kr ion irradiation at 625°C with a dose rate of 10⁻³ dpa/s

DIRECTIONAL DEFECT ACCUMULATION IN MATERIALS UNDER STRESS RTE 23-1845 LANL (Hi Vo)

Gatan straining stage

- 1 MeV Kr ion irradiation
- Molybdenum
- 400 °C

H.T. Vo, A.A. Kohnert, M. Schneider, W.Y. Chen (to be submitted)

ACKNOWLEDGEMENT

User projects were supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517 as part of Nuclear Science User Facilities

