Collaboration Partners:

- NSUF plus INL, ORNL, PNNL, Purdue University, Westinghouse
- NNUF plus UK NNL, Univ. of Manchester, Univ of Oxford, Univ. of Sheffield, UKAEA

NIFT-E

Neutron Irradiation as a Function of Temperature - Experiment

- Simon M. Pimblott, M.A., D.Phil., F.R.S.C.
- Chief Scientist
- Nuclear Science and Technology
- Simon.Pimblott@INL.Gov

INL's origin: The National Reactor Testing Station provided capabilities that drove nuclear innovation in the U.S. and around the world

- First nuclear power plant
- First U.S. city to be powered by nuclear energy
- First submarine reactor tested
- First mobile nuclear power plant for the Army
- Demonstration of self-sustaining fuel cycle
- Basis for LWR reactor safety
- Aircraft and aerospace reactor testing
- Materials testing reactors

Accelerating advanced reactor demonstration & deployment

NIFT-E Objectives

Strategic

- Explore sharing of nuclear facilities between US and UK
- Further nuclear energy research collaboration between US and UK

Technical

- Perform joint irradiation and post-irradiation examination campaign to
 - Capture effects of neutron irradiation as a function of temperature and dose on nuclear graphite and on alumina-forming austenitic (AFA) steels
 - Targets
 - Microstructure and mechanical property plus corrosion behavior
- Builds on previous and ongoing testing campaigns performed in US and UK

U.S.-U.K. Nuclear Energy R&D Cooperative Action Plan

Summary Brochure November 2023

Experiment Overview

- Drop In Materials Experiment
 - 8 capsules
 - 3 Graphite
 - 5 AFA/Miscellaneous alloys
- B7 position
- First Insertion Cycle: 175C

Capsule	DPA Target	Temperature
C1	2.0 ± 0.5 dpa	750 ± 50°C
C2	4.0 ± 0.5 dpa	750 ± 50°C
C3	6.0 ± 0.5 dpa	750 ± 50°C
AFA1	1.0 ± 0.3 dpa	400 ± 50°C
AFA2	1.0 ± 0.3 dpa	650 ± 50°C
AFA3	8.0 dpa nominal	400 ± 50°C
AFA4	4.0 dpa nominal	400 ± 50°C
AFA5	4.0 dpa nominal	650 ± 50°C

Mechanical Design

- Two Designs utilizing a Zr4 Outer Capsule similar to SAM-2
 - AFA Capsule
 - Graphite Capsule
- NIFT-E Stackable Outer Capsule
- AFA Capsule
 - Zr4 Fixture Body
 - Specimen and Passive Instrumentation
- Graphite Capsule
 - Merson 2114 Nuclear Grade Fixture Body
 - NIFT-E Can and Tungsten Heaters
 - Specimen and Passive Instrumentation

Neutronics Analysis

- Monte Carlo N-Particle transport code, MCNP, used to model and evaluate the NIFT-E experiment.
- Standard MCNP cross-section data libraries employed to calculate the neutron flux, dpa, heating rates and reactivity worth.
- The SCALE modules, COUPLE and ORIGEN, were used to calculate the activity and decay heat.
- Total core power scaled to the NW lobe.

Lobe	60-day Cycles [MW]	40-day Cycles [MW]
NW	24	24
NE	18	18
С	21.1	24.4
SW	23	32
SE	23	23

Thermal Analysis

- Two new 3D heat transfer models created in ANSYS 2022R2 for parametric studies and FDR temperatures
- Heating rates use a lobe power of 24.0 MW in the northwest lobe for the B7 position during cycle 175C and 179A
- Convective heat transfer on the capsules outer diameter assumes a 6 capsule test train
- Radiation modeled between fixture OD and capsule ID

Thermal Analysis—Gap Design

• Experiment designed for specimens to achieve the

following temperature targets:

- Capsule C1: 750 ± 50°C
- Capsule C2: 750 ± 50°C
- Capsule C3: 750 ± 50°C
- Capsule AFA1: 400 ± 50°C
- Capsule AFA2: 650 ± 50°C
- Capsule AFA3: 400 ± 50°C
- Capsule AFA4: 400 ± 50°C
- Capsule AFA5: 650 ± 50°C

	Identity		Gap Design			
Capsule	Cycle	Position	Gap [in]	Gas		
C1	175C	E	0.030	100% Ar		
C2	179A	E	0.030	100% Ar		
C3	179A	F	0.030	100% Ar		
AFA1	175C	D	0.030	100% He		
AFA2	175C	G	0.032	75%He, 25%Ar		
AFA3	179A	G	0.028	100% He		
AFA4	179A	D	0.030	100% He		
AFA5	175C	F	0.028	75%He, 25%Ar		

Specimen Irradiation Matrix

AFA/Miscellaneous Capsules						
		6mm X 1mm	3 X .5mm			
Material	Tensile	Corrosion Discs	TEM Discs			
GA05 SA	12	6	-			
GA05 HT	12	-	-			
GA05 20Ni SA	12	-	-			
GA05 20Ni HT	12	-	-			
AISI Type 304L SS 3 μm Al2O3 coated	-	7	-			
AISI Type 304L SS 1.5 μm FeCrAl 1.5 μm Al2O3 coated	-	7	-			
Oxide-Coated F/MSteels 3µm Al2O3 coated (misc)	-	-	4			
Oxide-Coated F/MSteels 1.5 μm FeCrAl 1.5 μm Al2O3 coated (misc)	-	-	4			
Adv Mfg Grade 91 (misc)	-	-	8			
HEAs (misc)	-	-	8			
Hetero Nano-composites (misc)	-	-	8			
TOTAL	48	20	32			

Graphite Capsules						
Material	9x18 mm3x1 mm6x1.5 mm9x5 mm discscylinder specimensdisc specimensdisc specimens					
IG110	4	2	-	-		
HOPG	-	-	2	-		
IPyC	-	-	-	5		
NBG18	4	1	-	-		
TOTAL	8	3	2	5		

AFA SS Specimen

- Quantity and Sizes
 - (20) Ø6x1mm
 - (32) Ø3x0.5mm
 - (48) SSJ3s 16x4x0.5mm

Passive Instrumentation

- 2 Fluence Wires (PNNL)
 - -Ø.047-.054 x .315" Max
 - (1x) Al-Co
 - (1x) Fe, Ti, Nb
- 3 Melt wires (4 shown)
 - 822782-1 Assy
 - Ø.060 x .250"
 - 1 above Target Temp
 - 1 close to Target Temp
 - 1 below Target Temp
- 1 SiC monitor (Ø3x1mm)

Graphite Fixture (Empty)

• Mersen Grade 2114 Nuclear Grade Graphite

Graphite Fixture (Filled)

NIFT-E CAN

Graphite Specimen

- Quantities and Sizes (min.)
 - (8) Ø9x5mm
 - (3) Ø9x18mm
 - (2) Ø3mm disc
 - (6) Ø6mm disc

Passive Instrumentation Holder

- 2 Fluence Monitors (PNNL)
 - -Ø.047-Ø.054" x .314" Max
 - (1x) Al-Co
 - (1x) Fe, Ti, Nb
- 2 Melt Wires (INL)
 - -Ø.060 x .314" Max
 - 681C
 - 850C
- 1 Ø3x1mm SiC monitor
- FOR Req. 2.2, 2.3

Assembly

UKAEA Fabrication

Project Timeline & Strategy

Activity	Finish Date
Final Design Complete	September 2023
Assembly Complete	June-July 2024
Commence Irradiation	September 2025

ATR Positic B-7	on	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6	Cycle 7	Cycle 8	Cycle 9	Cycle 10	Cycle 11	Cycle 12	Cycle 13
	А	AVAILABLE												
	В	AFA1	AFA4	AFA4	AFA4	AFA4	AFA4	AFA4	AVAILABLE	AVAILABLE	AVAILABLE	AVAILABLE	AVAILABLE	AVAILABLE
CAPSULE	С	C1	C1	C1	C2	C2	C2	C2	C2	C2	AVAILABLE	AVAILABLE	AVAILABLE	AVAILABLE
POSITION	D	AFA5	AFA5	AFA5	AFA5	С3	С3	C3	C3	C3	C3	C3	C3	С3
	Е	AFA2	AFA3	AVAILABLE										
	F	AVAILABLE												

NIFT-E Experiment Design Team

TEAM MEMBER	ROLE
Matthew Arrowood	Experiment Manager
Simon Pimblott	Program Technical Lead
Michael Fanning	Design Engineer
Angelica Mata Cruz	Neutronics Analyst
Matthew Mihelish	Thermal Analyst
Ryan Sandbek	Structural Analyst
Bryon Mowlds	Quality Engineer
Delaney Stine/Mark Hill	ATR Experiment Engineer
Ryan Marlow	ATR ESA Author
Chris Grovenor	NNUF Principal Investigator (P.I.)

INL Addressing the world's most challenging problems

Advanced Test **Reactor Complex**

- Steady-state neutron irradiation of materials and fuels
 - Naval Nuclear Propulsion Program
 - Industry
 - National laboratories and universities

Nuclear Science & Technology

- Nuclear fuels and materials
- Reactor systems design and analysis
- Fuel cycle science and technology
- Nuclear safety and regulatory research Advanced Scientific Computing

Transient testing **Materials** and Fuels

Complex

- Analytical laboratories
- · Post-irradiation examination
- Advanced characterization
- Fuel fabrication
- Space nuclear power and isotope technologies

National & Homeland Security Science & Technology

Critical infrastructure protection and resiliency

Energy and Environment

Science &

• Clean energy

Biomass

Technology

Advanced transportation

Advanced manufacturing

· Environmental sustainability

- Nuclear nonproliferation
- Physical defense systems

Idaho National Laboratory