Investigation of Degradation Mechanisms of Cr-coated Zirconium Alloy Cladding in Reactivity-Initiated Accident (RIA)

Dr. Woo Hyun Jung

Assistant Scientist, University of Wisconsin-Madison

Apr. 16, 2024

Project Team

University of Wisconsin, Madison (UW, Lead organization)

- Dr. WooHyun Jung (Lead PI)
- Dr. Hwasung Yeom (Co-PI)
- Dr. Kumar Sridharan (Co-PI)
- Tyler Dabney (graduate student)

University of Illinois, Urbana-Champaign (UIUC)

• Dr. Brent Heuser

Nuclear Regulatory Commission (U.S. NRC)

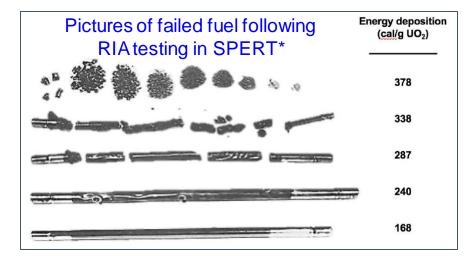
• Ms. Michelle Bales

* NSUF Technical Lead (INL)

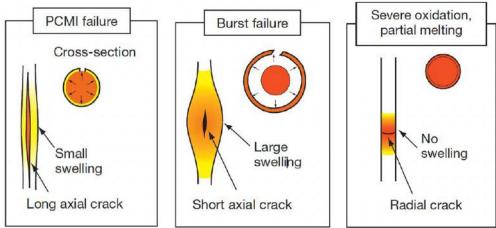
• Dr. David Kamerman

Background and Motivation

Data Gaps for Response of ATF Cr-coated Zr-alloy Cladding under Power Transient Conditions (RIA)

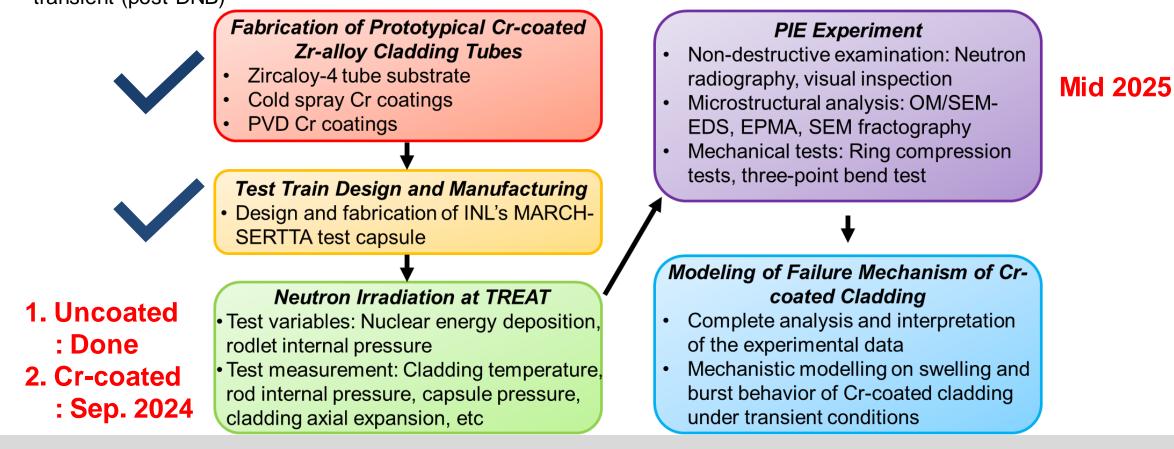

Reactivity-Initiated Accidents (RIA)

: Power transients in LWRs by sudden reactivity increase due to rapid control rod ejection


Data Gaps for ATF

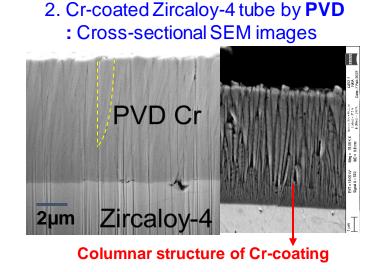
: Many reports identify data gaps for licensing and severa I <u>performance criteria of Cr-coated cladding under RIA</u> including:

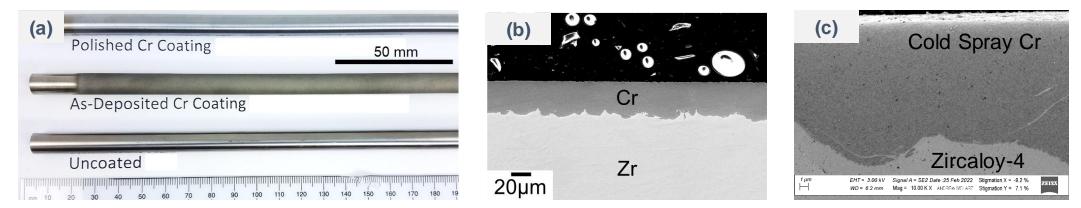
- ✓ Performance above Cr-Zr eutectic temperature (1332 °C)
- ✓ Post-quench ductility
- ✓ Coating integrity during swelling/rupture
- Transient boiling phenomena



Three failure modes in RIA transients**

Project Objectives and Status

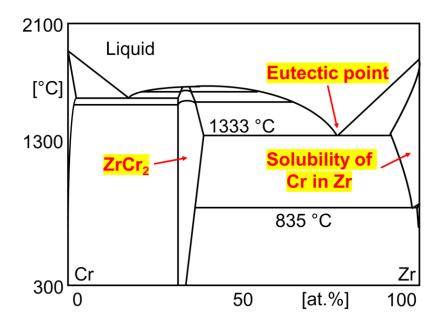

Investigation of thermal, mechanical, and irradiation response of <u>Cr-coated Zr-alloy claddings</u> (Cold spray, PVD) under RIA conditions, <u>in comparison to uncoated Zr-alloy cladding</u> to demonstrate various cladding failure modes at the later phase transient (post-DNB)



Rodlet & Irradiation Capsule Preparation

- Framatome Zircaloy-4 tubes for substrate
- Two types of Cr coating have been developed
 - 1. Cold spray technology at UW-M (~25 µm)
 - Smooth homogeneous Cr-coating / Nanohardness: 5.34 GPa
 - 2. Physical vapor deposition (PVD) at UIUC and external company (~8 µm)
 - Columnar structure of Cr-coating / Nanohardness: 3.67 Gpa
- Tube dimensions
 - Total tube length: 5.5"
 - Coated length: 4.25"

1. Cr-coated Zircaloy-4 tube by Cold Spray: (a) visual images, (b) cross-sectional SEM image, and (c) High-magnification SEM image


Hypothesis of Cladding Failure MEchanisms

Hypothetical Response of Cr-coated Claddings in RIA Tests

✤ In late phase transient, it is difficult to anticipate the failure modes due

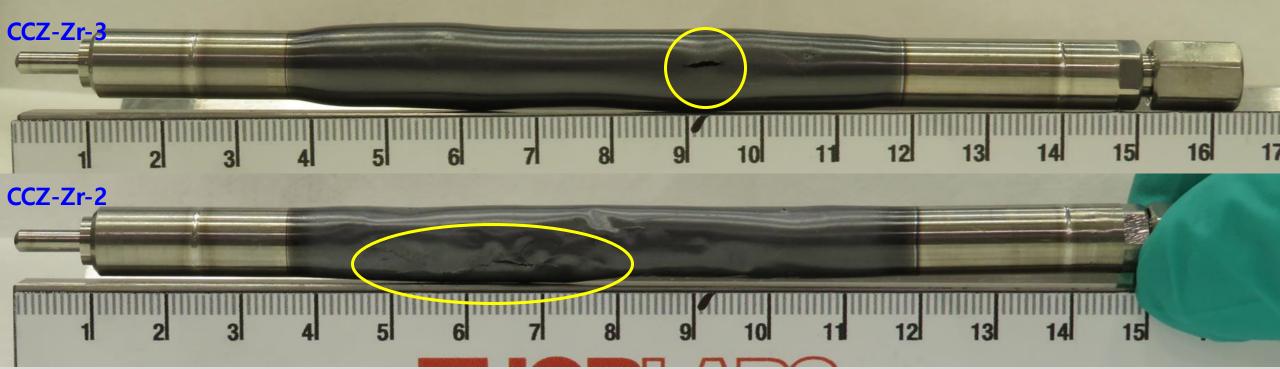
to the multifactorial effects of Cr coating

- a) Cr coating mitigates cladding-coolant interaction
 (i.e., Oxidation of cladding outer surface)
- Adhesion strength at coating/substrate interface would be changed by <u>Cr-Zr intermetallic compound formation</u>
- Mechanical properties of the coated cladding would be altered by <u>Cr-Zr interdiffusion and partial melting</u>
- **A) Rewetting behavior** of coated cladding are different from uncoated
 Zr-alloy due to evolution of surface characteristics

Cr-Zr binary phase diagram redrawn from published data [K. Zeng, 1993]

Total 5 RIA Tests Planned in 2023-2024

-	Test ID	Test Purpose	Sample ID	Target PCT (°C)	Target Energy D eposition (J/g)*	Rodlet Pressure (MPa)	Anticipated Failure Me chanism	
	NSUF-RIA-10 (CCZ-Zr-3)	Reference test w/o severe oxidation	Zr-4	<1200	1000	2	Ballooning and Burst	
Do	NSUF-RIA-11	Reference test w/ severe oxidation	Zr-4	>1332	1150	< 2 <u>(leaked)</u>	Severe oxidation +	
	(CCZ-Zr-2)	Kelerence test w/ severe oxidation					(Ballooning and Burst)	
	NSUF-RIA-1	Quantifying eutectic melting, oxidation of CS Cr coatin	CC Cr 7r 1	>1332	1150	0.1	Partial melting due to Cr	
-	(CCZ-CS-1)	g, DNB & film boiling	CS-Cr-Zr-1				/Zr eutectic	
	NSUF-RIA-2	Effect of Cr-Zr interdiffusion	CS-Cr-Zr-2	<1200	1000	2		
_	(CCZ-CS-2)	on ballooning & burst (Comparison w/ CCZ-Zr-3)					Ballooning and Burst	
_	NSUF-RIA-3	Effect of Cr/Zr eutectic melting		>1332	1150	2	Ballooning and Burst +	
	(CCZ-CS-3)	on ballooning & burst (Comparison w/ CCZ-Zr-2)	CS-Cr-Zr-3				Partial melting	
-	NSUF-RIA-6*	Effect of Cr diffusion on ballooning & burst response in		<1200	850	2	Dalla an'na an 1 Danat	
	(CCZ-PVD-1)	PVD coating (Comparison w/ CCZ-CS-2)	PVD-Cr-Zr-2				Ballooning and Burst	


- > RIA test for the PVD sample is canceled due to the budget limitation
- > Target Energy Deposition is determined based on the analysis of the INL-TREAT team with past data
- > In CCZ-Zr-2 test, there was a pressure leakage in the rodlet (< 2MPa)
- RIA tests for CS Cr-coated rodlets are planned in September 2024
- > PIE is planned to be finished by September 2025 (1-year NCE is approved)

RIA Test Results

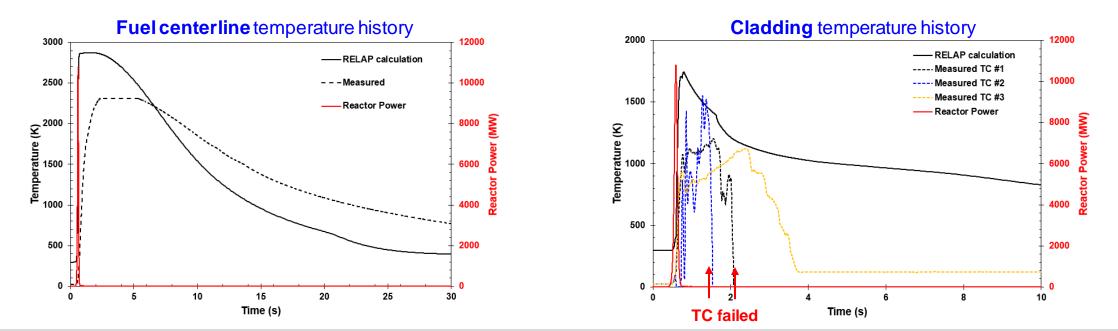
Visual observation for post-irradiation CCZ-Zr-3 & CCZ-Zr-2

- ✤ CCZ-Zr-3
 - Ballooning and burst was observed showing a burst opening
- ♦ CCZ-Zr-2
 - Severe oxidation was observed showing very brittle characteristic
 - Unclear if the ballooning and burst was occurred

RIA Test Results

RELAP analysis

CCZ-Zr-3 (1000J/g & 2 MPa)


- Centerline fuel temperature : Higher peak temperature than measured data due to TC's thermal response
- Cladding temperature : RELAP results shows higher temperature than the Cr-Zr eutectic point with PCT of 1470 °C (Higher than Cr-Zr eutectic point for 0.4 seconds)

CCZ-Zr-2 (1150J/g & <2 MPa)</p>

- PCT : 1645°C (Higher than Cr-Zr eutectic point for **0.65 seconds**)

> PCT varies according to the multiplication factor in RELAP analysis

- With the conservative factor, PCT of CCZ-Zr-3 is 1725 °C and of CCZ-Zr-2 is 1829 °C

RIA Test Plan and Future Works

RIA Test & PIE plan

Project Technical Task		2024				2025			
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Sample preparation and Transient irradiation tests: Two uncoated rodlets									
Disassembly and basic inspections for two irradiated uncoated rodlets									
Transient irradiation tests: Three CS Cr-coated rodlets									
RELAP analysis for thermal behavior of rodlets									
PIE tests: Neutron radiography, visual inspections, mechanical tests, and mi crostructural analysis (SEM fractography, Cross-sectional SEM, EPMA)									
Data analysis and modeling									

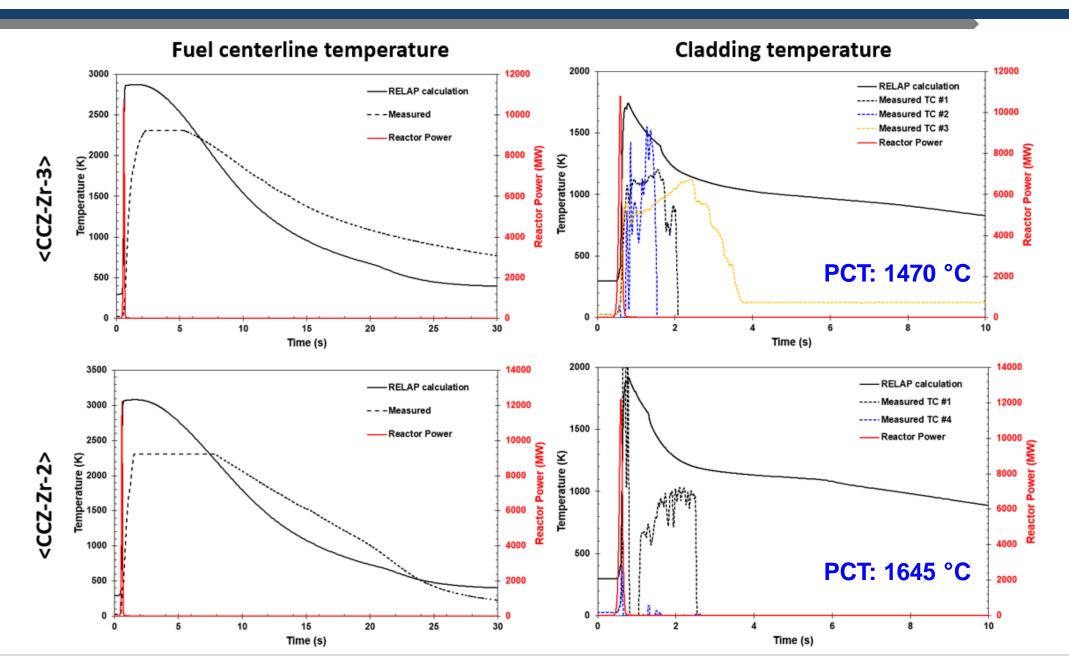
- As overall RIA tests and PIE is delayed from our original plan, one-year NCE request is approved and the p roject end date is Sep. 2025
- > Our final goal is to investigate the failure mechanism of Cr-coated cladding under RIA

Thanks for your attention

Questions?

WooHyun Jung

University of Wisconsin-Madison


wjung37@wisc.edu

RIA Test Results

