

Modern In Situ TEM Ion Irradiations with Real-Time AI-Powered Data Analysis

Kevin G. Field^{1,2*}

¹ University of Michigan, Ann Arbor, MI 48109 ² Theia Scientific, LLC, Arlington, VA 22201 * Corresponding author: kgfield@umich.edu

MICHIGAN ENGINEERING MICHIGAN ION BEAM LABORATORY

MIBL: Michigan Ion Beam Laboratory

MIBL Manager

Kevin G. Field MIBL Director

In 2022, ~192 irradiations were conducted by 113 researchers working on 45 projects and using Zhijie (George) Jiao Kevin G. Field ~5,713 hr of beam time.

MIBL: Michigan Ion Beam Laboratory

Cut-through of most "modern" in situ TEM ion irradiation configurations

Rad. Eff. **22** (1974) p163

UNIVERSITY OF MICHIGAN

MiTEM is capable of in-situ single and dual beam TEM ion irradiations

Ion Beam Systems --- Two beam lines linked to:

- A 400kV NEC accelerator equipped with a Danfysik Model 921 ion source can provide a wide range of ions (H⁺ to Au) ions with energy 20 keV ~1.6 MeV
- An Alphatross NEC ion source can deliver H and He ions in the energy range 5~30 keV
- Dual beam irradiation capability
- Remote control

MiTEM is unique in the US as it is AI/ML enabled with in-situ S/TEM capabilities including EELS/EFTEM

TEM Specs---TF30 TEM/**STEM**

- **Gun**: Thermo-FEG, HT: 100, 200 and 300keV
- **Operation modes**: CTEM: 0.1 nm lattice resolution and STEM: 0.34 nm point-to-point resolution
- **Cameras**: 2Kx2K UltraScan Pre-GIF CCD and 2Kx2K GIF CCD
- **Detectors**: HAADF, ADF and BF
- **EDS**: EDAX Appolo 30mm² SDD
- **GIF**: Gatan Continuum ER GIF---Dual EELS and STEEM SI and EFTEM SI
- **Holders**: TF low dose DT $(\alpha \sim \pm 70^{\circ}, \beta \sim \pm 30^{\circ})$, DENS Wildfire DT and Modified Gatan 952 DT ($\alpha \sim \pm 30^{\circ}$, $\beta \sim \pm 25^{\circ}$) Heating holders and two home made Faraday Cap holders and a modified Gatan 952 DT heating holder.
- **Remote control**
- **AI/ML Enabled**

MiTEM is unique in the US as it is AI/ML enabled with in-situ S/TEM capabilities including EELS/EFTEM

TEM Specs---TF30 TEM/**STEM**

- **Gun**: Thermo-FEG, HT: 100, 200 and 300keV
- **Operation modes**: CTEM: 0.1 nm lattice resolution and STEM: 0.34 nm point-to-point resolution
- **Cameras**: 2Kx2K UltraScan Pre-GIF CCD and 2Kx2K GIF CCD
- **Detectors**: HAADF, ADF and BF
- **EDS**: EDAX Appolo 30mm² SDD
- **GIF**: Gatan Continuum ER GIF---Dual EELS and STEEM SI and EFTEM SI
- **Holders**: TF low dose DT $(\alpha \sim \pm 70^{\circ}, \beta \sim \pm 30^{\circ})$, DENS Wildfire DT and Modified Gatan 952 DT ($\alpha \sim \pm 30^{\circ}$, $\beta \sim \pm 25^{\circ}$) Heating holders and two home made Faraday Cap holders and a modified Gatan 952 DT heating holder.
- **Remote control**
- **AI/ML Enabled**

MiTEM users have access to both *traditional heating holders* and a *MEMS* **based heating** holder to cover a wide range of irradiation temperatures and rates

A modified Gatan 952 Double-tilt Heating Holder

A modified DENSsolutions Double-tilt Heating Holder

Ion beam-side of the DENS holder

- **Temperature** ~1000°C; Good for $<$ 500 °C
- Tilt angle range: $\alpha = \pm 30^{\circ}$; $\beta = \pm 25^{\circ}$

- Temperature ~1300°C, Good for > 450 °C
- Tilt angle range: $\alpha = \pm 30^{\circ}$; $\beta = \pm 25^{\circ}$

MiTEM users have access to Gatan Continuum Imaging Filter (GIF) to perform high resolution *chemical imaging* when performing *in-situ TEM ion irradiations*

Gatan Continuum ER GIF:

- EF- BF, HREM and Electron diffraction patterns
- EELS, EFTEM and EFTEM SI
- STEM SI combined with the attached ADF detector

Microstructure Evolution of Nano-oxides in an ODS alloy – Example of *In-Situ EFTEM* for Chemical Mapping

In-situ TEM irradiation of a FeCrAl alloy in MIBL-(MC)² Results courtesy of K. Sun and H. Li (UM)

Early Dislocation Loop Formation in FeCrAl Alloys

2-Beam BF images showing the elimination of FIB damage then generation of radiation induced defect clusters in a model FeCrAl alloy irradiated by 1.2 MeV Kr ions at 320 °C with a damage level of (a) 0, (b) 1, (c) 2, and (d) 3 dpa, respectively.

Determination of critical dose to visible dislocation loop nucleation in the model FeCrAl using ML-based automatedanalysis

10:25 am in Blue Spring I!

BUT! What model should I use for my experiment?!

Materials swelling revealed through automated semantic segmentation of cavities in electron microscopy images

Ryan Jacobs^I, Priyam Patki, Matthew J. Lynch, Steven Chen, Dane Morgan & Kevin G. Field

Scientific Reports 13, Article number: 5178 (2023) Cite this article

1285 Accesses | 4 Citations | Metrics

A deep learning model for automatic analysis of cavities in irradiated materials

Oinyun Chen ^a ×, Chaohui Zheng ^b, Yue Cui ^b, Yan-Ru Lin ^c, Steven J. Zinkle ^{a c}

Show more \vee

+ Add to Mendeley α_0^0 Share 55 Cite

https://doi.org/10.1016/j.commatsci.2023.112073 7

Article | Open access | Published: 04 September 2019 Deep Learning for Semantic Segmentation of Defects in **Advanced STEM Images of Steels**

Graham Roberts, Simon Y. Haile, Rajat Sainju, Danny J. Edwards, Brian Hutchinson & Yuanyuan Zhu¹²³

Scientific Reports 9, Article number: 12744 (2019) Cite this article

13k Accesses | 101 Citations | 1 Altmetric | Metrics

A wide range of different ML techniques being developed for the same features

Get rights and content 7

Just run *all* the models!

*C.R. Field & K.G. Field, U.S. Patent Application No. 17/718,805

<1 hr from experiment to summary for paper!

6 + - 8 0 + - """"

Fig X: Microstructural evolution of a 100 appm He pre-implanted 316L sample during a 1 hour in-situ TEM anneal at 500°C showing the evolution of (a) average cavity diameter – in blue, (b) cavity count – in red, and corresponding (b-e) micrographs during the anneal where the colored polygons show the realtime cavity detections using a machine learning model [ref].

Over the past six months, the University of Michigan has performed ex-situ Helium implantations to 100, 1000, and 2000 appm Helium at 100°C into target materials including 316L stainless steels (for all conditions) and Inconel X-750 (for the 2000 appm Helium condition only). All irradiations were performed using 3.42 MeV He²⁺ through a rotating 6.20 μ m Al foil to promote a uniform appm Helium concentration profile across the entire implantation depth which exceeds $1 \mu m$. All irradiations maintained a 2o temperature deviation less than 5°C. Preliminary transmission electron microscopy (TEM) investigation of the overall microstructures in the 100 appm Helium condition showed no observable cavities in the implanted regime for the as-implanted condition of 316L. With increasing implantation to 1000 appm Helium, small $(\leq 5 \text{ nm})$ cavities were detected in the implanted region using bright field TEM imaging in the under focused condition for the 316L material. Characterization of the 2000 appm Helium condition are on-going and will be reported later.

In-situ TEM annealing of the 100 appm Helium condition of the 316L sample has been performed with preliminary results shown in Fig. X. The TEM lamella was isothermally annealed at 500° C using a Gatan 652 holder for 1 hour on a Thermo Fisher Tecnai $G² F30 TWIN TEM$ and continuously imaged in the underfocused BF-TEM condition at 1 frame per second (fps). During annealing+imaging, a Theiascope-XTM (Version 6.3.0) running the Jacobs et al. [1] machine learning model for cavity detection and quantification was run in real-time, with the quantitative results shown in Fig. Xa and segmentation overlays shown in Fig Xb-e. The results show that cavities nucleation or growth above the detection limit of the TEM did not occur for the first 27 minutes of the in-situ TEM annealing experiment. The initial scatter in Fig Xa is the result of the ML model having low-confidence predictions – additional, post processing of the data will remove these erroneous results. After 27 minutes, cavity formation was observed intra- and inter- to the grain boundaries (Fig. Xa,b) with significant increase in the number of cavities and cavity size occurring through 50 minutes into the in-situ TEM anneal (Fig. Xa,c-d). Past 50 minutes, no significant new cavity formation was observed or quantified via the Theiascope-X[™] and the material transitioned to a steady state coarsening regime (Fig. Xa,e). Results also showed that intragranular cavities coarsened more significantly compared to intergranular cavities suggesting a strong impact of grain boundary characteristics on the cavity nucleation and growth kinetics in the 316L implanted sample. Further analysis is on-going with additional in-situ TEM annealing studies planned for the 1000 and 2000 appm Helium implanted samples.

Take aways

- MIBL & DOE-NE/NSUF have placed significant investments to form MiTEM, a modern, state-of-the-art in-situ TEM ion irradiation facility
- Key differentiators for MiTEM:
	- Low cost- and hassle-free access for users
	- Remote operation simplifies user experiences
	- S/TEM capable microscope means both TEM and STEM-based experiments can be performed
	- Multiple stages enable a wide range of temperatures and heating/cooling rates
	- Gatan Imaging Filtering enables in-situ chemical mapping (GSI-21-25126)
	- Theiascope-X™ enables the most advanced real-time quantification system for nuclear materials

\bigcirc \bigcirc

Thanks!

NOMEIab MI I MICHIGAN ENGINEERING