N. Woolstenhulme, NSUF Program Review Apr 2024

Nicolas.Woolstenhulme@inl.gov

INL Irradiation Testing Capabilities

Intro & Outline

- Short presentation, skipping some types of "irradiation" (e.g., gamma, ions, isotopes)
 - Focus on Material Test Reactor missions: High flux or extreme conditions neutron irradiation of nuclear fuels and materials
 - In other words, only covering Advanced Test Reactor (ATR) and Transient Reactor Test facility (TREAT)
- Describe ATR and TREAT in context of national capabilities historic and current.
- Background on types of ATR and TREAT experiments in context of "irradiation testbeds"
 - Centered around reactor technologies DOE is most invested in (LWR, VHTR, and SFR)
- Sneak peak of near-future developments that may be interesting to NSUF

A Legacy of Pioneers

The Survivors who Carry On

INL's Test Reactors

Advanced Test Reactor (ATR)

- Water-cooled plate-type MTR started • 1967, still one of the newest and most advanced MTRs today
- Serpentine driver core creates nine flux • traps and numerous other test positions
- High flux, large useable test geometries • (1.2 m long core), and high capacity factor (for an MTR, ~200 day/yr)
- Rich history of capsule, lead out, and loop • irradiations
- Unmodified neutron spectra (thermal to • fast ratio): Inner core ~1:1, reflector ~10:1

Position	Diameter (cm/in)ª	Thermal Flux (n/cm ² -s) ^b	Fast Flux (E>1 MeV) (n/cm ² -s)
Northwest and Northeast Flux Traps Other Flux Traps	13.3/5.250 7.62/3.000 ^d	4.4 x 10 ¹⁴ 4.4 x 10 ¹⁴	2.2 x 10 ¹⁴ 9.7 x 10 ¹³
A-Positions (A-1 - A-8) (A-9 - A-16)	1.59 1.59/0.625	1.9 x 10 ¹⁴ 2.0 x 10 ¹⁴	1.7 x 10 ¹⁴ 2.3 x 10 ¹⁴
B-Positions (B-1 - B-8) (B-9 - B-12)	2.22/0.875 3.81/1.500	2.5 x 10 ¹⁴ 1.1 x 10 ¹⁴	8.1 x 10 ¹³ 1.6 x 10 ¹³
H-Positions (14)	1.59/0.625	1.9 x 10 ¹⁴	1.7 x 10 ¹⁴
I-Positions Large (4) Medium (16) Small (4)	12.7/5.000 8.26/3.500 3.81/1.500	1.7 x 10 ¹³ 3.4 x 10 ¹³ 8.4 x 10 ¹³	1.3 x 10 ¹² 1.3 x 10 ¹² 3.2 x 10 ¹²

12000

8000 6000

LOCA Shaped Transient

Overpower Ramps

10 15 20 Time (seconds)

Transient Reactor Test facility (TREAT)

- Graphite-based transient reactor ran from 1959-1994, refurbished and restarted in 2017
- Unparalleled transient shaping capability, rich history of fuel safety research
- Reactor layout facilitates real time data monitoring ٠

Types of ATR Experiments

ATR Experiment Categories

- Drop-in capsules:
 - Inert gas gap to elevate temperature, passive flux & temperature monitoring (measured in PIE)
 - Cd-lined basket used to absorb thermal neutrons for fast reactor fuels tests
- Gas Lead-outs:
 - Thimble tube with gas and instrumentation lines
 - Real time sweep gas composition control to adjust temperature and enable gamma spec monitoring (e.g., AGR series)
- Loop System
 - Instrumented specimens in PWR loops, chemistry and thermal hydraulic control via support equipment in shielded cubicles
- All ATR experiment types used for fuel and materials

Types of TREAT Experiments

tion Detector

- Static capsules (transient power shape create desired specimen response under capsule heat transfer conditions)
 - SETH, inert gas capsule
 - SERTTA, liquid water capsule
 - THOR, sodium bonded metal heat sink capsule
 - GHOST, graphite heat sink capsule
- Active capsules (transient power shape and active thermal hydraulic controls used to create desired specimen response)
 - TWIST water-blowdown capsules for LOCA testing
 - TWERL recirculating water loop for fast ramp/DNB testing (concept under development)
 - Mk-IIIR recirculating sodium loop
- All fuel-bearing TREAT tests are instrumented (there is little desire for "drop-ins" in transient testing)

SECTION C.C

Near-Future Capabilities (a short selection that may interest NSUF PI's)

- Early 2025: Low-cost warm-water loop for "Nuclear-Heated Flow Testing" in TREAT
 - Novel approach to measuring heat transfer behavior in advanced fuel geometries that cannot be simulated with electrical heating
 - To be deployed for Intertwined Nuclear Fuel Lattice for Uprated heat eXchange (INFLUX)
- Later 2025: New design "instrumented capsules" to be deployed in ATR
 - Fits between drop-in capsules and gas lead-outs in cost/capability spectrum
 - First test (IMPACT-1) to measure thermal conductivity evolution of metallic fuel
 - Other adaptations envisioned (ceramic fuel, fission gas release measurement)

Near-Future Capabilities

(a short selection that may interest NSUF PI's)

- ~2026: New INM investigation for fast reactor materials specimens (i.e., unfueled)
 - Assessing fast reactor specimens in various neutron energy spectra, comparing transmutations to true fast reactor (e.g., He production)
 - Some materials should go to HFIR flux trap (~10 dpa/yr, very limited neutron filtering)
 - Other materials should go to ATR OA position (~6 dpa/yr, with thermal neutron filtering), design forthcoming for INM-OA capsule in established Cd-basket
- ~2027: New water loops, and PCI ramp testing
 - AFC to install two new water loops in ATR Med-I positions "I-Loops" for LWR-ATF testing
 - 1 Loop for PWR condition, 1 Loop for BWR condition, either capable of flux manipulation for PCI ramp testing with ³He screen

Thanks for your attention, any questions?