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Nuclear applications for fiber optics (not a comprehensive list)
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Local temperature measurements in 
an experiment simulating gas-

cooled reactor core outlet mixing [6]

Sheath

Centering rods

Dense 
gamma-

absorbing tube

Insulator

Fiber optic 
temperature 

sensors

Heater 
wire

Distributed gamma 

thermometer (local 

power monitoring) [3]

Gas gap

Embedded sensors for pressure, 
corrosion, or acoustic emissions [4, 5]

[1] H.C. Hyer et al., Additive Manufacturing, 52 (2022), 102681.
[2] C.M. Petrie et al., Journal of Nuclear Materials 552 (2021) 153012.
[3] A. Birri and T.E. Blue, Progress in Nuclear Energy 130 (2020) 103552.

[4] D.C. Sweeney, A.M. Schrell, and C.M. Petrie, IEEE Trans. Instrum. Meas. 70 (2021) 1-10.

Sensors embedded in 3D printed stainless steel (left) or 
SiC (right) for local strain or vibration monitoring [1, 2]

[5] C.M. Petrie, D.C. Sweeney, and Y. Liu, US Non-Provisional Patent No. US 2021/0033479 A1, Application No. 
16/865,475, published February 4, 2021.
[6] H.C. Hyer et al., “Toward Local Core Outlet Temperature Monitoring in Gas -Cooled Nuclear Reactors Using 

Distributed Fiber-Optic Temperature Sensors,” Applied Thermal Engineering (under review).

Rad-hard Front End Digitizer (FREND) 

to transmit conventional sensor data 

through reactor containment over 

fiber optic cables to reduce noise in 

cabling [3]

Trace O and H detection in SFRs, 
other impurities in MSRs

SFR 
vessel
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Limitations for a-SiO2 and α-Al2O3 fiber-based sensors

[1] G. Cheymol et al., “High Level Gamma and Neutron Irradiation of Silica Optical Fibers in CEA OSIRIS Nuclear Reactor,” IEEE Trans. Nucl. Sci. 55 (2008) 2252-2258

[2] W. Primak, “Fast-Neutron-Induced Changes in Quartz and Vitreous Silica,” Phys. Rev. 110 (1958) 1240-1254.

[3] R.S. Wilks et al., “The irradiation-induced macroscopic growth of α-Al2O3 single crystals,” J. Nucl. Mat. 24 (1967) 80-86.
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Signal drift from low-temperature (~100°C), 
radiation-induced dimensional change [2,3]

a-SiO2 compacts

α-Al2O3 swells

Data 
gap

Low-temperature (<100°C) attenuation in a-SiO2 [1]
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Compaction-
induced infrared 

absorption

Ultraviolet to visible 
defect absorption (also 

exists for α-Al2O3)

3.2×1019 n/cm2

• Both sensors suffer from signal attenuation 
and drift under neutron irradiation

– Need to quantify at higher dose and 
temperature
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Inexpensive, passive HFIR irradiation tests

• “Slab” specimens irradiated in the High Flux 
Isotope Reactor (HFIR)

– 4 low-OH a-SiO2, 4 high-OH SiO2, and 4 α-Al2O3

per capsule

– 16 mm long × 5 mm wide × 0.85 mm thick

– Design temperatures of 100, 300, and 600°C 
confirmed by passive SiC temperature monitors 
(TMs)

Samples

Passive TMs

Holder

Spring 
pin

Fast neutron 
fluence 
(n/cm2)

Measured specimen temperatures (°C)

Target
100°C

Target
300°C

Target
600°C

2.4×1021 95 298 688

9.6×1021 88 N/A 592 Capsule parts before (top) 
and after (bottom) assembly

Irradiation test matrix
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Post-irradiation examination

• Optical transmission measured through specimen 
thickness

• Dimensional changes measured using micrometer

• Dilatometry to measure recovery of radiation-
induced dimensional changes

Reprinted from “High-dose temperature-dependent neutron irradiation effects on the optical transmission and dimensional stability of amorphous 

fused silica,” Journal of Non-Crystalline Solids Vol 525 (2019), C.M. Petrie, A. Birri, and T.E. Blue, with permission from Elsevier.

Optical measurementsSchematic (a) and picture (b) of optical measurement system

Post-irradiation specimen pictures

High-OH 
a-SiO2

α-Al2O3

Vis = visible; NIR = near-infrared region; UV = ultraviolet
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a-SiO2 radiation-
induced 

dimensional 
change

New data compared 
to previously 
developed model

• Good agreement 
at 592°C

• Further emphasizes 
missing physics at 
<100°C (swelling 
after peak 
compaction)
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Post-irradiation annealing of a-SiO2 radiation-induced compaction

• Initial recovery of swelling caused by low-temperature gamma 
irradiation after reactor shutdown?

• Significant recovery of radiation-induced compaction, particularly 
for samples irradiated at <300°C and heated to >500°C

– More significant in high-OH samples

Start of heating, relative to pre-
irradiation length

End of heating , relative to pre-
irradiation length

Low-OH High-OH
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α-Al2O3 radiation-induced dimensional changes

• Unfortunately we couldn’t 
accurately measure c-
axis changes

– Sapphire fibers are grown 
along c-axis

• Low temperature a-axis 
data consistent with 
literature

• High temperature a-axis 
data from this and 
previous RTE question 
validity of some literature 
data

– Our data suggest 
anisotropic swelling is less 
than previously reported

This RTE

Questionable 
literature data?

Previous 
RTE
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Post-irradiation annealing of α-Al2O3 radiation-induced swelling

• Minimal recovery of 
radiation-induced 
swelling

– Even in samples 
irradiated at <100°C 
and then heated to 
>800°C

– Good in the sense 
that once the sensor 
drifts it wouldn’t 
change much 
during temperature 
transients

Start of heating, relative to pre-irradiation length

End of heating , relative to pre-
irradiation length
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a-SiO2 transmission

• Increases in attenuation at higher dose are minor, particularly in near-infrared (>1,000 nm) range

– Broadband increases likely due to chemical interactions at higher temperatures, higher dose (time)

– Origins of increases >1,600 nm are unclear (compaction effects should be lower at higher temperatures)

This RTE

This RTE
This RTE

This RTE
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α-Al2O3 transmission

• Higher dose did not 
significantly affect 
attenuation after irradiation 
at ~90°C

• Prohibitive attenuation after 
3.2 dpa at 688°C also 
observed after 12 dpa at 
592°C

– Advanced Sensors and 
Instrumentation (ASI) 
program supporting 
transmission electron 
microscopy: Could Rayleigh 
scattering from radiation-
induced voids could provide 
an explanation?

– Unclear what would cause 
the attenuation at > 1600 nm

This RTE

This RTE
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Summary and conclusions

• Signal attenuation and drift are critical issues for both 
fused silica and single crystal sapphire optical fiber 
based sensors
– Data is needed at higher temperatures and neutron fluence

• Examined bulk a-SiO2 and α-Al2O3 samples irradiated 
in HFIR to 9.6×1021 n/cm2 at ~100, and 600°C

• a-SiO2 attenuation appears manageable but 
compaction-induced drift is significant and current 
models are not accurate at low temperatures and 
high dose

• α-Al2O3 attenuation is much higher than a-SiO2, 
particularly at higher temperatures (~600–700°C)

– ASI activity trying to identify potential mechanism

Post-irradiation pictures 
of a-SiO2 and α-Al2O3

specimens

95°C: a-SiO2

688°C: a-SiO2

95°C: α-Al2O3

688°C: α-Al2O3
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Thank You

Questions?
Chris Petrie, petriecm@ornl.gov
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