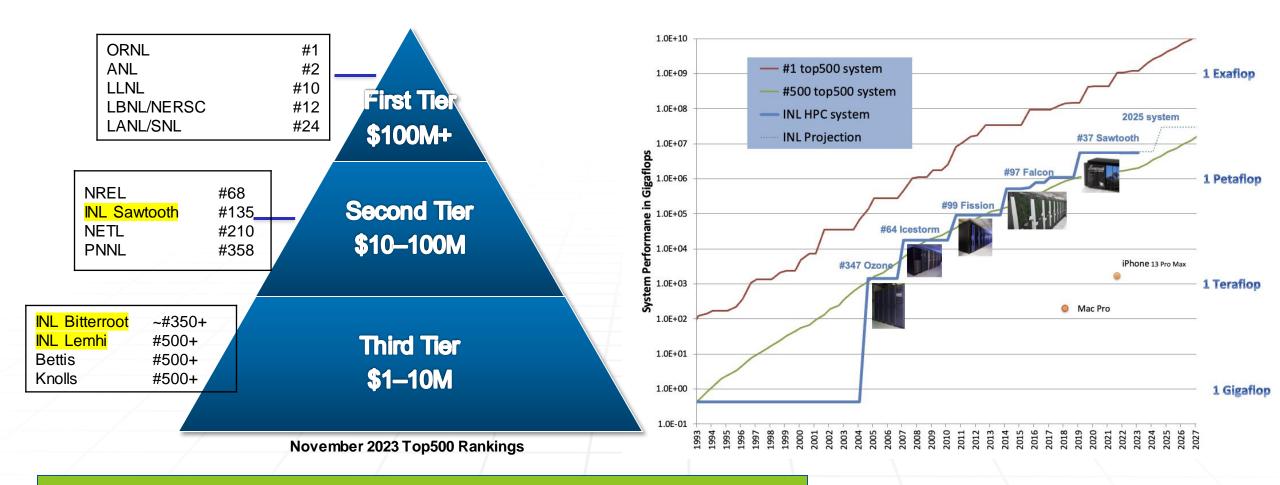


HPC: Expanding computational research capabilities:

- Investing in scientific computing capacity
- Developing and validating innovative modeling tools
- Supporting data science gateways
- Supporting innovative software container strategies
- Expanding expertise in machine learning, artificial intelligence, advanced visualization, large-scale data processing and analytics



NSUF HPC Trajectory

DOE Ecosystem – HPC Trends – INL positioning

Continual updates are required: ~20-30PF for 2025 system

High Performance Computing Resources

- NSUF HPC systems support a wide range of users and programs as a shared-use resource for national laboratories, universities, and industry
- Bitterroot (2024)
 - 374 nodes, 41,888 cores
 - Powered on 16 April 2024
- Sawtooth (2020)
 - 6 Petaflops performance
 - 2,079 compute nodes, 99,972 compute cores
 - #37 on November 2019 TOP500 list
 - Open for users: 17 March 2020
- Lemhi (2018)
 - 1 Petaflop performance
 - 504 compute nodes, 20,160 compute cores
 - #427 on November 2018 TOP500 list
 - Open for users: 28 Feb 2019

A right-sized solution for DOE Nuclear Energy research and development

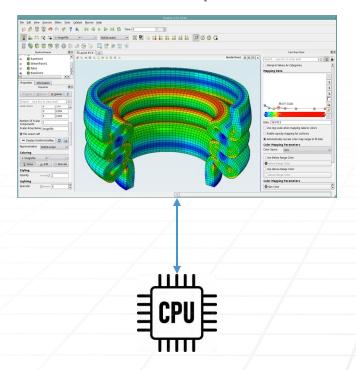
Bitterroot

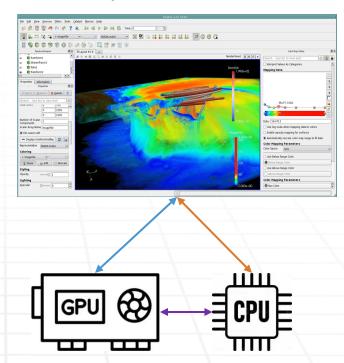
Sawtooth

Lemhi

Artificial Intelligence and Visualization Systems

- HPC systems also support artificial intelligence and visualization specific systems:
- Hoodoo
 - 44 A100 GPUS
 - Open for users: 2 Feb 2021
 - Expanded to 116 A100 GPUs
 - Expansion open to users: 15 Jan 2024
- Viz
 - 9 Compute nodes; 864 cores; 2 TB/node
 - 18 A40 48GB GPUs
 - Open to users: 15 Dec 2023


Hoodoo



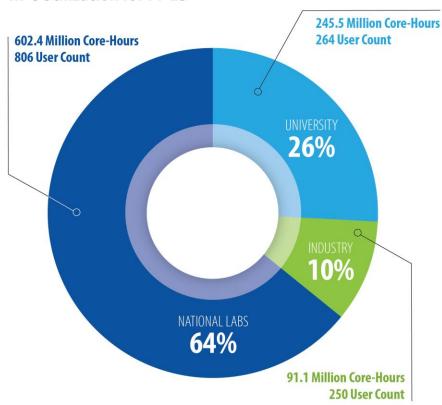
INL Open OnDemand (HPC OnDemand and OnDemand) Desktop vs. Desktop with Visualization

Desktop with Visualization

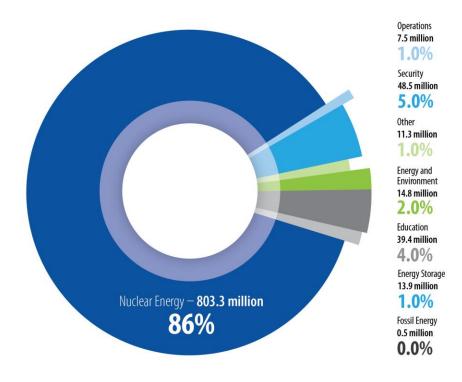
Bitterroot Bridge to Teton

- 384 Nodes
 - Node specs
 - 2 Sapphire Rapids 56 core CPUs
 - 256 GB RAM
 - 48 nodes with HBM
- 41,888 cores
- 200 Gb/s OmniPath network
- Will complement existing systems (Sawtooth, Lemhi, Hoodoo, Viz)
- Expected power-on 16 April 2024
- Release date target of June 2024

Commodity Technology Systems-2 (CTS-2)


Deployed at LLNL & Sandia Photo credit: Garry McLeod.

HPC User Statistics



• In FY-23:

- Total number of users: 1320
- Million Core-Hours Delivered: 939

HPC Utilization in Core-Hours by Reporting Category

Institutions with largest number of users

Institution	User Count	Million Core-Hours
ldaho National Laboratory	405	481.4
Naval Nuclear Laboratory	86	23.2
Argonne National Laboratory	32	22.2
MPR Associates	27	20.9
Oak Ridge National Laboratory	25	66.5
Westinghouse Electric Company	22	16.8
North Carolina State University	22	97.6
University of Tennessee Knoxville	16	11.0
Texas A&M University	14	12.2
Georgia Institute of Technology	14	2.6
Pennsylvania State University	13	2.6
Nuclear Regulatory Commission	12	19.0
University of Wisconsin-Madison	12	6.2
Idaho State University	10	5.2
Oregon State University	10	9.6
Massachusetts Institute of Technology	10	15.1
TerraPower	9	3.3
Los Alamos National Laboratory	9	6.0
University of Idaho	8	17.6
Rolls-Royce	8	0.0
University of Michigan	7	1.8
University of Illinois Urbana-Champaign	6	2.1
Boise State University	6	7.6
BWX Technologies, Inc	6	3.4
Radiant Industries Incorporated	5	1.8
FPoliSolutions LLC	5	0.0
Analytical Mechanics Associates	5	2.3
University of Florida	5	18.4
Purdue University	4	1.0
The Ohio State University	4	0.0
University of Mississippi	4	11.3
Virginia Commonwealth University	4	9.8

Supported Trainings:

FY-24 Trainings using HPC Resources				
10/01/2023 - 09/30/2024				
Training Name:	Participant Count:			
2023 IAEA Lise Meitner Programme 2 (LMP2)	33			
Bison Training for BWXT	18			
International RELAP5-3D User Group Meeting (IRUG)	84			
Griffin Training - NRC	29			
SAM Training - NRC	29			
Bison Fuels Performance Training @MIT January	31			
SAM Training - NRC	24			
Canadian Nuclear Laboratories (CNL) Bison Training	11			
ART/NEAMS M&S Pebble Bed Reactors				
1 April 2024 ART/NEAMS M&S Molten Salt Reactors				
May 2024 NRC Griffin/Pronghorn Training GC-PBR				
NEAMS Griffin Neutronics Fast Reactor Modeling and Simulation				
SHIFT/NEAMS (SCALE-NEAMS) Training				
	10/01/2023 - 09/30/2024 Training Name: 2023 IAEA Lise Meitner Programme 2 (LMP2) Bison Training for BWXT International RELAP5-3D User Group Meeting (IRUG) Griffin Training - NRC SAM Training - NRC Bison Fuels Performance Training @MIT January SAM Training - NRC Canadian Nuclear Laboratories (CNL) Bison Training ART/NEAMS M&S Pebble Bed Reactors ART/NEAMS M&S Molten Salt Reactors NRC Griffin/Pronghorn Training GC-PBR NEAMS Griffin Neutronics Fast Reactor Modeling and Simulation			

Chatbot

- HPC deployed an LLM using HPC documentation
- Available in Open OnDemand (<u>https://ondemand.hpc.inl.gov</u>) and (https://hpcondemand.inl.gov)

HPC AI (Beta)

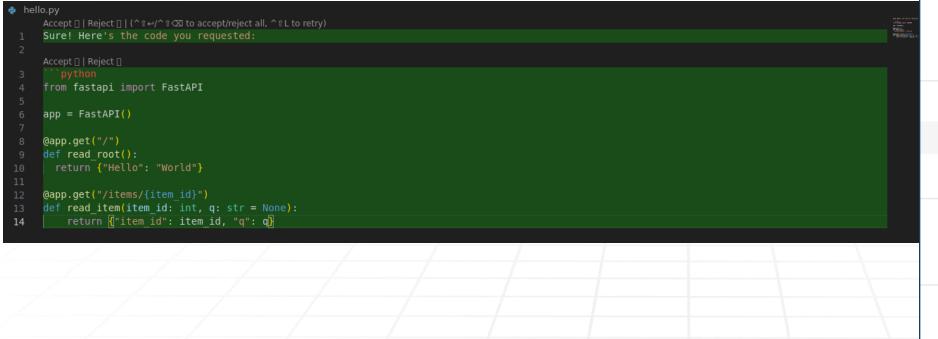
Hi! I'm an HPC AI developed by the HPC team at INL. I'm still in beta, so you may see some weird behavior. Please report issues to hpcsupport@inl.gov so this service can be improved. I was last updated on Feb 14th 2024.

Try asking me about

Tell me about Lemhi

Lemhi is a supercomputer at INL with a Dell PowerEdge distributed memory system, 20,160 cores, 94 TB of total memory, Omni-Path interconnect network, and high-speed storage. It became available in February 2019. The two login nodes are called "lemhi1" and "lemhi2" with specifications of 2 Intel Xeon Gold 6148 CPUs, 384GB of 2666MHz DDR4 RAM, and 1 NVIDIA Quadro P5000 GPU. There are 504 compute nodes with the same CPU specifications and 192GB of 2666MHz DDR4 RAM. The LINPACK rating for Lemhi is 1.002

Send a message



Al VSCode Plugin

Local GitHub Copilot like tool

Interactive Apps -

Information -

Desktops

Linux Desktop

Linux Desktop with Visualization

GUIs

Barracuda VR

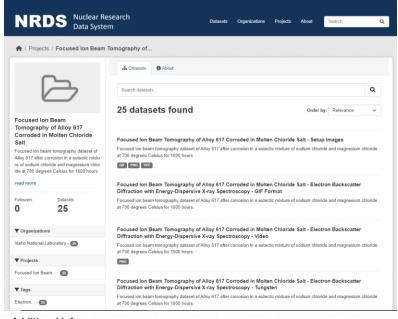
IDE

✓ VSCode Desktop

✓ VSCode Server

Jupyter

Jupyter


RDM

Research Data Management

NRDS https://nrds.inl.gov

- Place for data to be:
 - Publicly available
 - FpAIRe
 - Findability
 - Peekable
 - Accessibility
 - Interoperable
 - Stored close to HPC systems
 - Reusable
 - Extensible

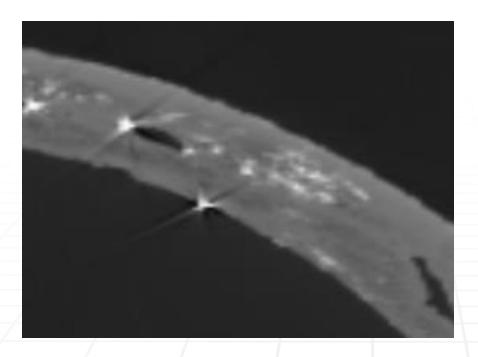
Additional Info

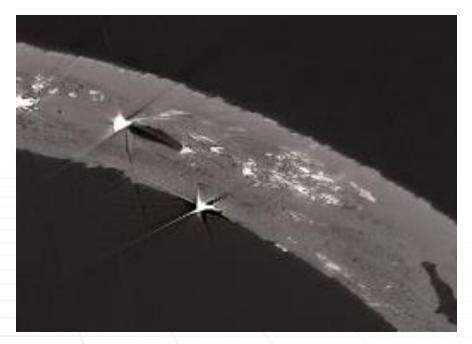
	Field	Value
	Author	Trishelle Copeland-Johnson
	Last Updated	February 27, 2024, 2:04 PM (UTC-07:00)
	Created	February 7, 2024, 10:31 AM (UTC-07:00)
	οςπ	
	DOI Link	https://doi.org/10.48806/2287679
	Instrument	FEI G4 Helios Hydra Plasma-FIB
	Publication	Copeland-Johnson TM, Murray DJ, Cao G and He L (2022) Assessing the Interfacial corrosion mechanism of Inconel 617 in chloride molten salt corrosion using multi-modal advanced characterization techniques. Front. Nucl. Eng. 1:1049693. doi: 10.3389/fnuen.2022.1049693
	Slice Offset	100 nm
	Statement of Credit	"Focused ion beam tomography of Alloy 617 corroded in molten chloride salt" by Trishelle Copeland-Johnson and Daniel J. J. Murray is licensed under CC BY 4.0 for distribution.

NRDS Al Analysis

- Currently Available
 - Super Resolution
 - Activity Detection

Super Resolution

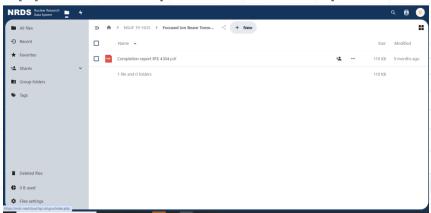

Low resolution to high resolution photo

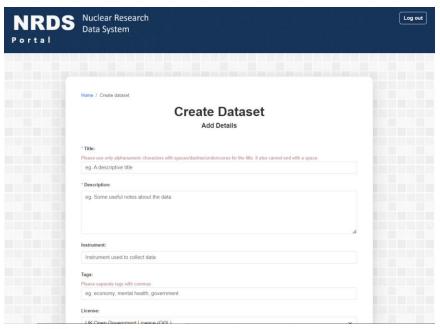

Images will be deleted after one day of generation. Please make sure to download the image or else the image will have to be regenerated

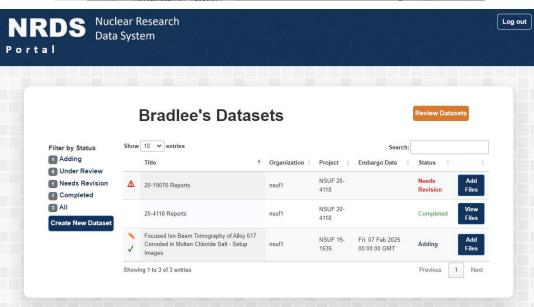
Upscale

Sharpen

Compare Images

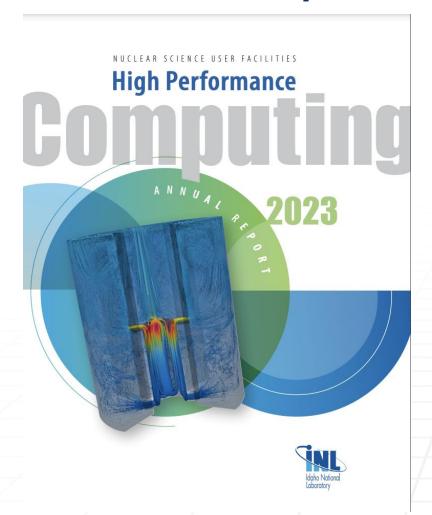






NRDS Portal

- Any researcher within the project can upload data
- Enforced embargo dates
- Allows drop and drag of files
- Collaboration among others in project
- Pl approval required before public release



Annual User Report

https://www.osti.gov/biblio/2328595

Hundred's of user report Summary of major FY23 accomplishments

B.140 SpaceX Falcon Heavy Mass Constraints as Design Driver for Practical Heat Pipe Stirling Microreactors

Report Participants

Watson, Daniel L¹, Gatchalian, Ronald Daryll E¹, Hsieh, Hui-Yu ¹, Bhat, Pramatha ¹, Tsvetkov, Pavel ¹ 1 Texas A&M University

Scientific Achievement

A nuclear reactor system was designed with a SpaceX Falcon Heavy as the design driver (mass and size constraints). Neutronics, depletion, shielding, and criticality safety analyses were performed with MCNP6.2 on the INL Sawtooth cluster. Ansys was performed on local Texas A&M resources to assess heat-pipe performance.

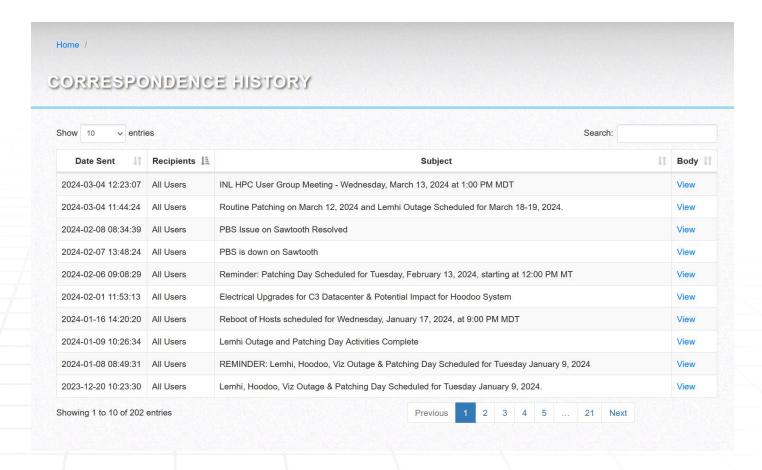
Significance

The project outcomes delineated the maximum power yields achievable with the current commercial heavy-lift rocketry utilizing a nuclear power system. Acceptable neutron radiation doses were observed at the 300 kWt power range with LiH shielding, however, photon doses surpassed NASA FSP SoW DR-3's threshold (combined 5 Rem/yr). The reactor, modeled on INL's "Special Purpose Heat Pipe Microreactor Design A," exhibited safe shutdown margins during oceanic submersion incidents and control drum malfunctions.

Key Publications

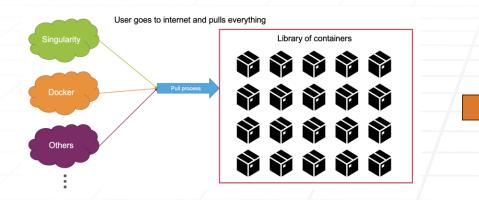
Watson, D. L. P., Gatchalian R. D. E., Hsieh H., Bhat P., & Tsvetkov P. V (2023). SpaceX Falcon Heavy Mass Constraints as Design Driver for Practical Heat Pipe Stirling Micro Reactors. Proceedings of Nuclear and Emerging Technologies for Space (NETS 2023), Idaho Falls, 305-311. doi.org/10.13182/NETS23-41911

Sponsor/Program


This project was completed as an assignment within a course at Texas A&M University (NUEN610 - Reactor Design). Maturation of the evaluations yielded a conference paper that was accepted to NETS 2023, and ultimately invited to a special (upcoming) publication of Nuclear Technology.

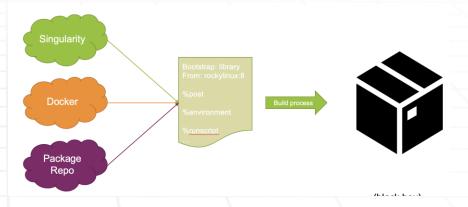
HPCweb Correspondence History

 A searchable list of emails that have been sent to users



HPC Container Strategy

- HPC developed and published a high performance computing container strategy based on layering
- Adopted by development teams at Sandia, Naval Nuclear Laboratories, ATR, and Relap5.

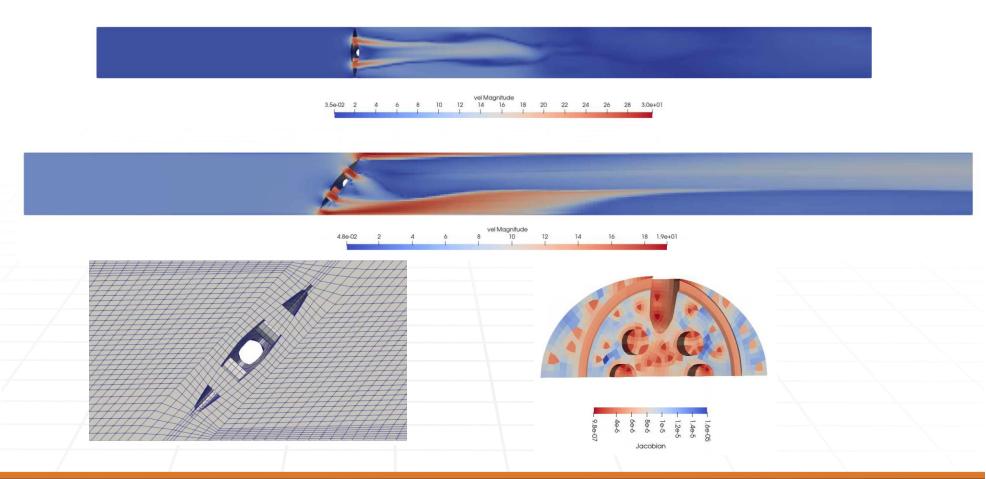

Software Quality Assurance for High Performance Computing Containers

MATTHEW SGAMBATI and MATTHEW ANDERSON, Idaho National Laboratory, USA

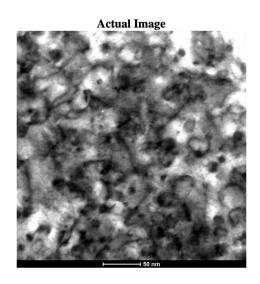
Software containers are a key channel for delivering portable and reproducible scientific software in high performance computing (HPC) environments. HPC environments are different from other types of computing environments primarily due to usage of the message passing interface (MPI) and drivers for specialized hardware to enable distributed computing capabilities. This distinction directly impacts how software containers are built for HPC applications and can complicate software quality assurance efforts including portability and performance. This work introduces a strategy for building containers for HPC applications that adopts layering as a mechanism for software quality assurance. The strategy is demonstrated across three different HPC systems, two of them petaflops scale with entirely different interconnect technologies and/or processor chipsets but running the same container. Performance consequences of the containerization strategy are found to be less than 5-14% while still achieving portable and reproducible containers for HPC systems.

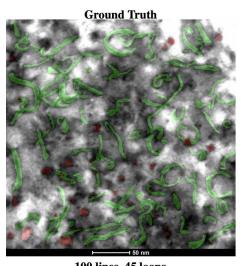
Additional Key Words and Phrases: singularity, containers, message passing interface, software quality assurance

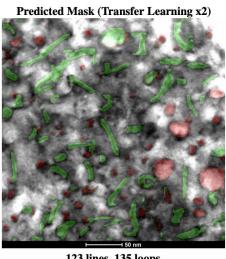
https://doi.org/10.1145/3569951.3593596


Verification and Validation Efforts for key MOOSE software

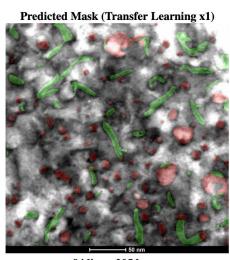
ATR Butterfly Valve







Automated Dislocation Defect Detection



123 lines, 135 loops

94 lines, 205 loops

Soon to appear in NRDS...

Questions

