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The Need for Accident Tolerant Fuels

• In March 2011, an earthquake and tsunami 
caused a loss of coolant accident at the 
Fukushima Daiichi nuclear power plant

• Excessive decay heat cause high temperature 
steam oxidation of Zircaloy fuel cladding

• Oxidation of cladding caused significant release 
of hydrogen gas

• Hydrogen gas build up eventually led to 
explosion releasing radioactive fission products 
into environment

• In 2012, congress authorized funding for DOE to 
lead development of accident tolerant fuels
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GE’s Accident Tolerant Fuel Program

• Collaboration between US 
Department of Energy, GE 
Research, Global Nuclear Fuel, 
GE-Hitachi, and several US 
national labs

• Short term cladding concept is 
coated Zircaloy (ARMOR)

• Mid-term cladding concept is 
FeCrAl (Ironclad)

• Long term concept is 
developing SiC-SiC CMCs for 
fuel channel materials
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Why FeCrAl?
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• FeCrAl alloys have similar hydrothermal corrosion performance to Zry-2
• Enhanced high temperature steam oxidation resistance due to Al (forms 

protective passive Al oxide film)
• Better mechanical properties (especially at elevated temps) than Zry-2 

allow for thinner cladding (less neutron absorption)
*R.B. Rebak, K.A. Terrani, R.M. Fawcett, FeCrAl Alloys for Accident Tolerant Fuel Cladding in Light Water Reactors, Vol. 6B Mater. Fabr. (2016) V06BT06A009.
**S.S. Raiman, K.G. Field, R.B. Rebak, Y. Yamamoto, K.A. Terrani, Hydrothermal corrosion of 2nd generation FeCrAl alloys for accident tolerant fuel cladding, J. Nucl. Mater. 
536 (2020) 152221. 
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Mechanical Properties of Al Containing Ferritic 
Alloys
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Al 
content

W. Chubb, S. Alfant, A.A. Bauer, E.J. Jablonowski, F.R. Shober, 
R.F. Dickerson, Constitution, Metallurgy, and Oxidation 
Resistance of Iron-Chromium-Aluminum Alloys: BMI-1298, 1958.

J. Herrmann, G. Inden, G. Sauthoff, Acta Mater. 
51 (2003) 2847–2857.

• Adding Al in solution 
to a ferritic matrix 
shifts DBTT to higher 
temps and 
significantly reduces 
ductility

• Hardening comes 
from SSS and possibly 
Al producing excess 
vacancies

• Adding Cr also 
increases SSS and 
reduces ductility

M. Matijasevic, A. Almazouzi, J. Nucl. Mater. 377 (2008) 147–154.
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Mechanical Properties of Al Containing Ferritic 
Alloys
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• Work done by 
ORNL showed 
impact 
toughness of 
low Cr and 
APMT FeCrAl
variants

• Best performers 
were fine 
grained, 
equiaxed, and 
homogenous 
microstructures

• Retained strain 
had severe 
effect on impact Qu, Assessment of Irradiated Microstructure and Mechanical Properties of FeCrAl Alloy Fabrication Routes

Sun, Z., Yamamoto, Y., & Chen, X. (2018). Impact toughness of commercial and model FeCrAl alloys. Materials Science and Engineering: A, 734, 
93-101.



Effects of Microstructure on DBTT of C26M
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• Compared wrought (cast/forged) 
and powder (PM-HIP and 
extruded) C26M

• Both Wrought and Powder C26M 
have similar avg. grain size (~60 
microns)

• Powder C26M sample has 
broader grain sizer distribution

Hoffman, A. K., Umretiya, R. V., Crawford, C., Spinelli, I., Huang, S., Buresh, S., ... & Rebak, R. B. (2023). The 
relationship between grain size distribution and ductile to brittle transition temperature in FeCrAl alloys. Materials 
Letters, 331, 133427.
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Effects of Microstructure on DBTT of C26M
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• Both C26M-P and C26M-W have 
similar DBTT and upper/lower shelf 
toughness

• C26M-P has much broader transition 
region than C26M-W

• Difference is assumed to be due to 
grain size distribution

• Small amount of retained strain in 
powder sample could also be 
attributing

Misorientation maps from 
EBSD
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Hoffman, A. K., Umretiya, R. V., Crawford, C., Spinelli, I., Huang, S., Buresh, S., ... & Rebak, R. B. (2023). The 
relationship between grain size distribution and ductile to brittle transition temperature in FeCrAl alloys. 
Materials Letters, 331, 133427.



Effects of Microstructure on DBTT of C26M
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• Mostly brittle fracture 
within transition region 
temps

• Pockets of ductile 
fracture appeared, 
assumed to be fine 
grained regions
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Hoffman, A. K., Umretiya, R. V., Crawford, C., Spinelli, I., Huang, S., Buresh, S., ... & Rebak, R. B. (2023). The 
relationship between grain size distribution and ductile to brittle transition temperature in FeCrAl alloys. Materials 
Letters, 331, 133427.



Effects of Grain Size on High Temperature 
Oxidation
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• Fabrication route as very little influence on 
high temperature steam oxidation

• Stable passive Al layer forms on all 
materials, differences may be due to 
chemistry rather than microstructure

Qu, Assessment of Irradiated Microstructure and Mechanical Properties of FeCrAl Alloy Fabrication Routes

Hoffman, A. K., Umretiya, R. V., Gupta, V. K., Larsen, M., Graff, C., Perlee, C., ... & Rebak, R. (2022). 
Oxidation resistance in 1200° C steam of a FeCrAl alloy fabricated by three metallurgical 
processes. JOM, 74(4), 1690-1697.



Effects of Microstructure on Irradiation 
Response
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• Microstructure has significant 
impact on loops and α’ after 
irradiation

D. Zhang, S.A. Briggs, P.D. Edmondson, M.N. Gussev, R.H. Howard, K.G. Field, Influence of welding and neutron 
irradiation on dislocation loop formation and α′ precipitation in a FeCrAl alloy, J. Nucl. Mater. 527 (2019). 
https://doi.org/10.1016/j.jnucmat.2019.151784.Qu, Assessment of Irradiated Microstructure and Mechanical Properties of FeCrAl Alloy Fabrication Routes



Finding a Balance in FeCrAl Alloys
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• Ferritic Fe-Cr based alloys suffer from embrittlement due to α’ 
precipitation, accelerated by irradiation

• Cr important for corrosion resistance, but need to find a good balanced 
composition

• Need to determine Al and Mo chemical effects on α’ to find “sweet spot” 
composition

Cr Content

Hydrothermal
corrosion 

α’ 
Embrittlement

12 wt.% 21 wt.%

Al Mo

FeCrAl
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NSUF RTE on FCCI Behavior of FeCrAl 
Alloys
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• NSUF-RTE-20-
4108

• Diffusion 
couples from 
ATF-1 
experiments 
(ATR) show 
formation of 
amorphous U-
Al-Cr oxide at 
fuel-clad 
interface. Qu, H. J., Higgins, M., Abouelella, H., Cappia, F., Burns, J., He, L., ... & Rebak, R. B. (2023). FeCrAl fuel/clad chemical interaction in light water reactor environments. Journal of 

Nuclear Materials, 587, 154717.
Qu, Assessment of Irradiated Microstructure and Mechanical Properties of FeCrAl Alloy Fabrication Routes

APMT C35M



NSUF Project Overview
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NSUF Project Overview
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• Multi-objective approach to maximize value of irradiation matrix

• Compare proton to neutron irradiation of FeCrAl alloys for accelerated 
testing using ion beam facilities

• Focus is on α’ (number density, volume fraction, average size) and loop formation, hardness 

studies to provide general idea of mechanical behavior

• Provide comparison of wrought alloys (current commercial irradiations) 
to new powder metallurgy route

• Allow GE to make programmatic decisions based on Hatch/Clinton LTRs/LTAs

• Provide first comparison of irradiation response between three 
manufacturing routes for FeCrAl alloys (first irradiation of additive 
FeCrAl)

• Provide test specimens to NSUF library with model FeCrAl alloys and 
diffusion multiples-understand effects of composition on irradiation 
response
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RIS behavior after proton irradiation @ 5 
dpa
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Wrought PM AM

• 5-layer RIS structure at GB
• RIS thickness ~17.6 nm

• 5-layer RIS structure at GB
• RIS thickness ~22.4 nm

• 3-layer RIS structure at GB
• RIS thickness ~10 nm
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Comparison of precipitates and loops @ 
2dpa
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Wrought PM AM

• Fe and Si enrich inside the 
dislocation loops and Cr 
enriches

• at the edges of the loops
• DL diameter is 19.8 ± 6.2 nm 

and density is 1.2 × 1022/m3

• Fe and Si enrich inside the 
dislocation loops and Cr 
enriches

• at the edges of the loops
• DL diameter is 19.5 ± 4.11 nm 

and density is 9.43 × 1021/m3

• Fe and Si enrich inside the 
dislocation loops and Cr 
enriches

• at the edges of the loops
• DL diameter is 31.4 ± 9.8 nm 

and density is 1.1 × 1021/m3
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APT data @ 2dpa
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AM C26M at 2dpa 

• APT 3D reconstruction shows clearly 
large clusters and dislocation loops in 
AM C26M after proton irradiation at 
2dpa

• Si and Fe enrich in the loops and Cr 
distributes at the edges of the loops

• More precisely and comprehensively 
data analyses are still ongoing



Project Timeline and Progress
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