Surface Near Helium Damage in Materials Studied with a High Throughput Implantation Method,

Peter Hosemann;

S. Stevenson, D. Frazer; Y. Yang; Yujun Xie; Xie Huang, Y. Yang, M. Balooch; F. Allen

University of California, Berkeley;

Office of Science

4/18/2024

NSUF user facility at UCB:

Helium damage in nuclear applications

Helium can be created due to (n, α) nuclear reactions which leads to the formation of He bubbles in the material.

T and He content define the formation of He bubbles.

Can a novel materials testing approach lead to new insight?

S.J. Zinkle and L.L. Snead Annu. Rev. Mater. Res. 2014. 44:8.1–8.27

Workflow on implantation and mechanical property studies

2) Many samples should see multiple doses/irradiation parameters

The same area/grain cannot be followed

The approach presented here, allows to follow the same grain/area to multiple doses within one irradiation

Micro area implantation using the ORION Nanofab

Ga/Ne/He Installed in 2015 at UC Berkeley.

Non conductive samples without coating

Patterning

Using the He beam for Implantation in scanning mode

RION NanoFab 77155

Previous work using similar methodology

Previous work Z. Wang et al Acta Mat 121 (2017) 78-84

F. Bergner, G. Hlawacek, C. Heintze, J. Nucl. Mat, 505 (2018) 267-275

Materials studied at UCB's tool to date

171 citations and H-factor of 11.4

Pure elements	Alloys and composites
Vanadium (P. Hosemann JMR 2021) Titanium (in preparation) SiC (Ambat JOM 2020 Si (Huang 2023 JAP W (Balooch J Nucl Mat 2022 W (Scripta Allen 2020) Copper (Winter J. Nucl. Mat. 2018) Copper (Yang J. Nucl. Mat. 2018) Copper (Wang Acta Mat. 2016)	 316l –oxidized (Hong JAP 2022 Zr-BMG –(Huang J. Nucl. mat 2024 W-Cu composite (Wurmshuber Scripta 2022 Cu-Fe-Ag composite (Wurmshuber Mat Char. 2022) 304 (Schoell JOM 2020 YsO3-Fe layer (Mairov Scripta 2019) F82H (Kooknoh unpublished) HEA (Kooknoh unpublished)

Experimental setup for rapid survey of material under Helium implantation

FCC material (Cu)

Scanning probe results (AFM)

1E17 He/cm²

UNIVERSITY OF CALIFORNIA

 $1E18 \text{ He/cm}^2$

Increased volume with higher dose.

At 1E18 He/cm² blisters occur

Good agreement between TEM and AFM (sputter yield 0.1 atom/He ion)

Van der waals consideration leads to the conclusion that the bubbles are under pressurized

Nanoindentation results

Elastic properties decrease with helium content Hardness increases and decreases with helium content

Blistering and Channeling

Annealing after irradiation inside the SEM

Unpublished data

TEM of the Blisters

HAADF-STEM

Bubble size gradient: Bottom: 1 nm – 5 nm clear gradient Middle large bubble up to 20 nm <u>mixture of bubble radii</u>

4D STEM of the Blisters

Sample remains fully single crystalline

Continous rotation between areas, discontinous roatation wheere delamination occurs, see also roation map

FCC material (316l and oxidation)

Does Helium irradiation accelerator oxidation?

Research Question: What will happen to helium bubbles when the material is oxidized?

AFM Measurement

M. Hong et al. J. Apl. Phys Nov. 2022

Oxidized at 400C for 5h and 10h post implantation Question: Dose the pre-implanted area oxidize faster?

Surface changes after exposure

Observation of pre-implanted oxidation 400C 5h 5E17

M. Hong, J. Appl. Phys. 2022

HIM implantation in Si

X. Huang, Y.J. Xie, M. Balooch, S. Lubner and P. Hosemann

Published J. Appl. Phys. 2022

Swelling as a function of dose in Silicon

M. Balooch & P. Hosemann Unpublished data 2021

Dose 5x10¹⁶ He ions/cm² and 1E17ions/cm²

He Irradiation

Changes in Silicon with Helium dose

Summary

- Helium implantation with HIM is a rapid and high throughput method to evaluate materials evolution under Helium implantation
- Highly localized and precise method to target specific regions of interest
- Large library of data has been established
- International community started to use similar methods

THANK YOU FOR YOUR ATTENTION!

Questions?

Summary

- Introduction of Helium implantation using HIM and surface near techniques for rapid screening studies and detailed property examinations.
- Examination of Helium swelling and blistering using TEM and AFM in Cu yields good agreement between different characterization techniques.
- Blisters start to develop by linking up Helium bubbles and developing critical cracks.
- Find the change of Silicon upon Helium ion beam irradiation as a function of dose.
- Ion beam and electron beam channeling occurs on the blisters.
- Residual stress measurements reveal that blistered material exceeds the flow stress at similar length scales.

THANK YOU FOR YOUR ATTENTION!

Questions?

Weak effect of different dose rates

TEM will show how the bubble structure changes with dose rate

Helium implantation in hcp

Titanium

Volumetric swelling (AFM) and indentation

7×1017 ions/cm2 implant

Pop-in behavior (Nanoindentation)

Bubble distribution (TEM)

Ti(0001) 7E17 ions/cm2: 20 nm – 80 nm

0 µm

5

10

Ti(0001): 20 nm – 80 nm

UNIVERSITY OF CALIFORNIA

Ti(101baro) in situ indentation

Relaxation strain and average

- Relaxation strain was calculated with the help of a customized MATLAB based DIC code:
- <u>http://it.mathworks.com/matlabcentral/fileexchange/50994-</u> <u>digital-image-correlation-and-tracking</u>
- A uniform distribution of residual stresses was assumed over the region of interest and calculations were made according to method described in the following papers:
- <u>https://doi.org/10.1016/j.jmps.2019.01.007</u>
- <u>https://doi.org/10.1016/j.matdes.2018.02.044</u>
- Other calculation parameters are as follows;
 - Modulus of Elasticity (E) \rightarrow 127.60 (literature)
 - Poisson's ration (v) \rightarrow 0.37 (literature)

UNIVERSITY OF CALIFORNIA 🌙

Bubbles formation

- Bubbles with 1 to
- in equilibrium or

Mechanical

Berkeley

Analysis of mechanical properties

- At low doses H increases with dose first but reduced as dose approach high values studies.
- The results of H versus depth and swelling versus dose explained well by a phenomenological equation

$$N_{He} = \frac{N_0}{2S} \sum_{d=1}^{10} \left[erf\left(\frac{x + \frac{10^3 \times S}{N_0} - (36 + 23.3d)}{\sqrt{2} \times DR_p} \right) - erf\left(\frac{x - (36 + 23.3d)}{\sqrt{2} \times DR_p} \right) \right]$$

(6)

Hardness as a function of irradiation: summation model

Conclusion

- Swelling and blistering of tungsten irradiated with 25 keV
 helium ion has been investigated in a site-specific manner
- Bubbles near the surface with 1-2 nm in diameters are identified
- Channeling phenomena was observed on low-index planes
- E and H versus depth, on and off the implanted area, have been measured by nano-indentation technique
- A simple phenomenological equation has been developed to explain the measured profiles of nano-indentation and swelling assuming the implanted ions are deposited with Gaussian depth distribution and that the helium atoms quickly diffuse forming bubbles keeping the initial depth distribution intact

Similar study on other materials

Bubble ditribution (TEM): Imaging

7×10¹⁷ ions/cm² implant

50 nm

Effect of dose rate

2×10^{17} ions/cm²

Results: Effects of post-irradiation annealing

Similar study on other materials

Different Materials Using a Helium Ion Beam Microscope

-> Expand this rapid carooning approach to other materials systems

EFFECT OF HELIUM PILLAR IMPLANTATION

Micro area implantation in pillars

No influence of scanning parameters on bubble structure was found

A simple way to display the orientation relationship

Z. Wang et al; Acta Mat 2016

Implanting nanopillars to different doses.

Demonstrated in single crystal Cu and nanotwinned

structures

Implanting nanopillars to different doses.

Ga source: 30Kev, from 1nA to 1.6pA Cut Cu nano pillars from one grain

He source: 25Kev, 40pA Implanted to different doses

Post implantation mechanical testing

Loading Information: <u>Single crystal Copper</u>: D=300 nm Loading along [100]; Beam direction:[110]

Insitu compression testing reveals different deformation mechanisms on pillars ~200nm in size

Not implanted

210nm diameter pillars single crystal twinning

10¹⁷ He implanted

Stress strain curves on nanotwinned materials

UNIVERSITY OF CALIFORNIA

Quantifying Bubble structure

 $1/d_{111}He} \rightarrow a_{He} \rightarrow Density$

Comparison between model and experiment

Calculated value is smaller than the measured value(1E18 ions/cm²)

2 weeks aging of the sample draws a different picture

Comparing elastic modulus modeling/experiment

Berkeley

Deformation changes the He bubble superlattice

Schematic of the mechanism

- Introduce the benefits of nanoscale He implantation
- Demonstrate a rapid implantation approach in materials using the ORION NanoFab Helium ion beam microscope.
- Demonstrated He implantation in Cu nanopillars and TEM foils (NT-Cu and SC-Cu), the novel technique makes it feasible and efficient to evaluate He ion damage and its effect on small volume materials.
- The resistance of TB migration was significantly improved by He implantation.
- He implantation fosters the development of twins in small pillars.
- The He supper lattice after TB migration(NT-Cu) and deformation twinning(SC-Cu) was still kept due to the directional cutting of the He bubbles through twining partial dislocations. While, the He supper lattices preferred to be destroyed by the random ordinary dislocation motion.

Future work: Expand to other materials; incorporate heating; tensile testing, etc.

UNIVERSITY OF CALIFORNIA

Thank you for your attention!

TEM tomography of the Blister

Penetration depth of Helium considering ion channeling

Channelling is observed for the does of 1×10¹⁸ ions/cm²

TEM bright-field

STEM HAADF

Quantification of Pressure in Helium **Bubbles via 4DSTEM and Computer Simulations**

A. Kohnert, A. Minor, P. Hosemann, L. Capolungo

Fundamental Understanding of Transport Under Reactor Extremes (FUTURE)

NC STATE

"Captain Future" "Capitaine Flam"

FUTURE EFRC key points

The post cascade surviving defects are responsible for transport phenomena and therefore alter the materials microstructure and composition.

We aim to understand the effects of the post cascade damage evaluation and their means with the post cascade damage evaluation and their university of california

FUTURE EFRC

PI: Blas Uberuaga

Cross-cut Thrust: Multiscale Modeling Leads: Mark Asta (UCB) and Laurent Capolungo (LANL) Edward Holby (LANL); Digby Macdonald (UCB); Blas Uberuaga (LANL)

Generation of Helium filled cavities

Helium bubbles are studied since decades and occur due to (n,α) reactions and Helium implantations in fusion and fission.
What stresses surround Helium bubbles and can they be related to the gas content and pressure?
B. Monserrat et al, Phys Rev Lett

4D STEM- A method to mapping method to provide more inside into the samples.

4D STEM- A method to mapping method to provide more inside into the samples.

Nanobeam diffraction strain mapping

Connecting with Experiments

4D STEM

He implanted Au at CINT Sandia (K. Hattar) and post implantation annealing at 360°C

- 4D STEM provides 2D map of strain around helium bubbles
- Modeling Question: Can we use this information to determine the pressure in the bubbles?

(b) Summed diffraction pattern Virtual DF (e) **Deflection map** (d) shift of the 220 reflection (g) exx Strain in X Strain in Y +1% . 1. 11 0.0 -0.2

(c)

HAADF

20 nm

-0.4

validate the models

-Chisholm, Gammer, Kohnert, Ozdol, Hattar, Capolungo, Hosemann, Minor, (to be submitted)

Simulation Setup

UNIVERSITY OF CALIFORNIA

- Experimental conditions reproduced as closely as possible
- Three variables available in the model
 - Bubble pressure (P)
 - Average stress in the grain ($\bar{\sigma}$)
 - Foil thickness (L)
- Generates a **3D map** of stresses and strains

Virtual Experiment

- 1. Place bubbles with pre-defined pressure & average stress state
- 2. Generate 3D fields of stresses and strains
- 3. Apply several formulas to convert 3D fields to 2D image

Through Foil Average Strain

 In order to obtain similar strain fields 3GPa pressure would be needed (non physical)

In Plane Strain

 Analytical analysis indicates pressure of ~700 MPa in largest bubble to achieve experimental strain state (in-plane)

Maximum Strain

- Tensile values appear within bubble perimeter
 - Pressure magnitudes remain reasonable

TEM foil under external stress?

UNIVERSITY OF CALIFORNIA

 $P + \sigma$

Isotropic vs. Anisotropic elastic properties

Elastic constant considerations

Compare the data with loop punching

- Helium introduced
- Radiation damage forms
- Bubbles not visible

2) Anneal implanted sample

- Damage annealed out
- Bubbles grow
- Pressure limited by loop punching

3) Cool and measure strain

- Temperature reduced
- Gas pressure drops
- Maximum pressure in bubbles is less than loop punching pressure

$$P_2 \approx P_1 \frac{T_2}{T_1}$$

Physical limit on pressure

Loop Dunching	1450 MPa	Agree within measurement	Pressure from measured strain	
(at anneal 360°C)			600 MPa	Isotropic Analysis
Max Pressure	690 MPa	enor	720 MPa	Anisotropic Analysis
(at measurement)				
UNIVERSITY OF CALIFORNIA 🖌				

4D STEM is able to map the strain around microstructural features and calculate a pressure.

A model allows to further allowing to calculate the pressure in a Helium bubble and further the V/He ratio using EOS.

EOS	He per V (@720 MPa)	He per V (@1100 MPa)
Ideal Gas	2.05	3.14
Stoller '85	1.05	1.29
Stoller '14	1.01	1.21
Trinkaus '83	0.85	1.10

The virtual experiment agrees well with the actual experiment.

The EFRC allows for <u>modeling and experiments to be coupled</u> and establishes a method for further in the EFRC and other programs.

FUTURE inspired new work:

What is the stress at onset of blistering?

Increasing dose

JEIVI

Why strain mapping in FUTURE EFRC Thrust III \rightarrow environmental interaction??

• Hypothesis:

3) Radiation and corrosion related (electrochemically-induced) stresses may fundamentally alter corrosion rates and mechanisms.

316l, exposed to Lead Bismuth Eutectic (LBE) at 450C, 1000h <<10⁻⁸wt% oxygen

Deep penetration of LBE in the metal:

Ni has a high solubility in

BF

Why strain mapping in FUTURE EFRC? Hypothesis:

3) Radiation and corrosion related (electrochemically-induced) stresses may fundamentally alter corrosion rates and mechanisms.

Phase map (red fcc, blue bcc)

At leaching paths bcc phase is found.

P. Hosemann, D. Frazer, E. Stergar, K. Lambrinou; Scripta Materialia. 118 (2016) 37-40

Hypothesis: does the leaching induced phase transformation lead to lattice stress and cracks?4D STEM will help answer this question

Why strain mapping in FUTURE EFRC?

3) Radiation and corrosion related (electrochemically-induced) stresses may fundamentally alter corrosion rates and mechanisms. *Bi atoms decorating Nickel GB*

UNIVERSITY OF CALIFORNI

Jian Luo, Science 23 2011

Stress strain response showing LME in steels J. Van den Bosch, P. Hoemann et all, J Nucl. Mat.

Elements originating from the liquids (Bi shown here) can decorate GB. What is the role of stresses in Liquid metal Embrittlement?

4D STEM will help us answer this question.

Comparison AFM-TEM data

Consider implanted He and equilibrium pressure

From TEM: 1E18 sample of 97nm and 5E17 sample of 39nm

From AFM :1E18 sample of **91nm** and 5E17 sample of **33nm**.

Consider implanted He and equilibrium pressure

$$P = \frac{2\gamma}{R} = [P + \frac{an^2}{V^2}](V - nb) = nRT$$

Only using TEM data (5E17 and 1E18)

 $5*10^{17}$ ions/cm² should contain $2.37*10^{18}$ Helium atoms/cm² to account for the bubble size 1E18 ions/cm² should contain $7.28*10^{18}$ Helium atoms/cm² to account for the bubble size.

The bubbles are a factor 4 (5E17) and factor 7 (1E18) too large to account for equilibrium.

→ Under pressurized bubbles

Why strain mapping in FUTURE EFRC?

• Hypothesis:

3) Radiation and corrosion related (electrochemically-induced) stresses may fundamentally alter corrosion rates and mechanisms.

Quantification of the stresses formed in passive films in extreme environments (molten metal, aquas, etc)

- → Spalling of passive films.
- \rightarrow Does radiation relax these stresses ?
- → Can these stresses contribute to transport problems in the metal/environment interaction?

Summary

Demonstrated how 4D-STEM strain mapping and modeling combined

a) Help us understand the data (maximum strain vs. average strain)

b) Quantify the pressure in a Helium bubble

c) Quantify the stress around the bubble which helps understand dislocation bubble interactions

d) Will help us understand blistering effects at very high Helium doses better.

How 4D-STEM will be utilized in environment thrust in the FUTURE EFRC

a) Quantify grain boundary stress with environmental segregates in the material (Pb, Bi, Te, etc..) and contribute to the understanding of LME phenomena

b) Quantify the stress in passive films formed under different conditions and relate to film spalling with and without irradiation.

c) Stress is a contributing factor to transport mechanism. Being able to quantify it on a local scale will allow to enhance the transport problem understanding. Berkeley

Thank you for your attention

