

Outlook on the future of Computing Resources for Nuclear Energy Studies - NEAMS

Cody Permann, Ph.D. Computational Frameworks

Nuclear Energy Advanced Modeling and Simulation 4/17/2024 NSUF Program Review

- NEAMS Program and Software Products Overview
- Multiphysics and Multiapps structure and computing needs
- Flexible Reactor Modeling
- Future Research Directions

• Slide/Image Credits:

A. Abdelhameed, G. Giudicelli, A. Novak, A. Lindsay, D. Gaston, N. Martin, C. Icenhour, A. Abou Jaoude, Y. Miao, E. Shemon, F. Kong, A. Lindsay, P. Simon, P. Humrickhouse, T. Franklin

NEAMS Program

- Nuclear Energy Advanced Modeling & Simulation
- DOE-NE led program across several national labs: INL, ANL, ORNL, LANL
- Targeting non-LWR advanced reactor designs
- Divided into 5 technical areas:
 - Fuel Performance
 - Reactor Physics
 - Thermal Hydraulics
 - Structural Materials & Chemistry
 - Multiphysics Applications
- Primarily leveraging the MOOSE framework for software development

NEAMS Suite of Tools for Advanced Reactor Simulation

MultiApps: Enabling Multiscale Simulation

- MOOSE-based solves can be nested to achieve Multiscale-Multiphysics simulations
 - Macroscale simulations can be coupled to embedded microstructure simulations
- Arbitrary levels of solves
- Each solve is spread out in parallel to make the most efficient use of computing resources
- Efficiently ties together multiple team's codes

Multiapp Coupling Example

Multiapp Objects Examples

- MultiApps hierarchy/type determines the order/timing of app execution.
- CentroidMultiApp
 - · Generates a sub app at every element centroid
 - Useful for multiscale simulations
 - Example TRISO Fuel Compact
 - Parent: Assembly with Fuel compact
 - Homogenized properties
 - Neutronics/Thermomechanics
 - Child: TRISO particle
 - Detailed heterogeneous properties
 - Peal fuel temperature
- Stochastic Related MultiApps
 - Just to statistically control some key parameters in child applications

NUCLEAR ENERGY

Additional Complex Multiphysics Models

- NekRS high fidelity CFD (not MOOSE-based)
- OpenMC high fidelity neutron transport (not MOOSE-based
- Sibling Transfer Illustration

Model Characteristics/Parallelism

- MOOSE is hybrid parallel following the MPI+thread model
 - OpenMP, pthreads, and C++ threads
- Model sizes can reach billions of DOFs
 - Corresponding processor counts from 1 to tens of thousands of cores
- MultiApp coupling with flexible parallel solution transfer capabilities
 - Multiscale coupling with advanced time stepping options, solution transfer options
- Online mesh generation, can be parallelized
- General distributed mesh capability with customizable "stencils"

- Currently have limited GPU capabilities:
 - PETSc has some GPU solver capabilities
 - Some algorithms (i.e. transport sweeper) have been ported
 - New funding in FY24+ is being used to explore more GPU usage oppurtunities
 - NekRS runs on GPUs
- NEAMS/MOOSE usage account for ~250 million core hours per year in the INL HPC Enclave

Reactor Use Case: SFR

NEAN

Advanced Burner Test Reactor (ABTR)

- Neutronics (Griffin) coupled with • structural thermomechancis – POC: Javier Ortensi (INL)
- System code hydraulic (SAM) simulation coupled with point kinetics model-POC: Rui Hu (ANL)

900

Reactor Use Case: HTGR

High-Temperature Reactor (HTR-10)

- Steady-state benchmarks with different control rod positions
- Neutronics (Griffin) with heat conduction (MOOSE)
- POC: Javier Ortensi (INL)

- 1600

- 1400 - 1200 운

High-Temperature Test Facility (HTTF)

- Coupled heat conduction
- with system hydraulics
 Steady-state and transient simulations

Pebble-Bed Modular Reactor (PBMR400)

- Coupled neutronics (Griffin) with thermal hydraulics (Pronghorn)
- Multiscale modeling: core-pebbleparticle
- Steady-state and transient simulations
- POC: Paolo Balestra (INL)

Reactor Use Case: FHR

Generic Fluoride High-Temperature Reactor (gFHR)

Mk-I FHR

- Coupled core neutronics (Griffin) with core thermal hydraulics (Pronghorn) with plant hydraulics (SAM)
- Steady-state and transient simulations
- POC: Guillaume Giudicelli (INL)

Reactor Use Case: MSR

Molten Salt Reactor Experiment (MSRE

Coupled systems hydraulics with point • kinetics model (SAM)

- Steady-state and transient simulations •
- Benchmarked against MSRE data ٠
- POC: Rui Hu (INL) •

Molten Salt Fast Reactor (MSFR)

- Coupled core neutronics (Griffin) with core thermal hydraulics (Pronghorn) with plant hydraulics (SAM)
- Steady-state and transient simulations
- POC: Mauricio Tano (INL)

He secondary loop

He Cold

He Hot

Reactor Use Case: Microreactor

Power - Unconstrained

Fuel Tave - Unconstrained

Fuel Tavg - Constrained

Power - Constrained

Empire Design

- Coupled core neutronics (Griffin), heat pipe (Sockeye), and thermomechanics (Bison)
- Steady-state and transient simulations
- POC: Javier Ortensi(INL), Nicolast Stauff (ANL)

Time: 500 s

Microreactor (GC-MR)

- Neutronics (Griffin) coupled with ۰ system hydraulics (SAM) and thermomechanics (Bison)
- Steady state and transient capabilities
- POC: Nicolas Stauff (ANL)

NEAMS Summary

- INL HPC resources are the preferred NEAMS resource for National Labs, Universities, and Industry Collaborators through Nuclear Computational Resource Center.
- INL HPC resources are commonly leveraged for tool training and workshops (e.g. ANL meshing workshop, NRC training, etc.).
- INL HPC is the preferred resource for multi-lab computing projects due to ease of access (e.g. NRIC DOME modeling).
- INL HPC resources are the most flexible for applied multiphysics research

DOE CONNECT Program

- Creation of Next-gen Nuclear Energy Computational Technology
- DOE supported effort to leverage Office of Science (ECP) accelerator technologies deployed in applied programs
- Multilab effort: INL, ANL, ORNL
- Exploring the use of various accelerator libraries in MOOSE

 libCEED: <u>https://ceed.exascal</u> <u>eproject.org/libceed/</u>

MFEM: <u>https://mfem.org/</u>

Future Directions: Fusion

- Accelerating Fusion Device Design using MOOSE
- Design iteration and rapid commercialization requires equally rapid evaluations of components and systems, with tightly coupled physics:
 - Tritium generation/transport/safety analysis
 - Neutronics, plasma
 - TH / CFD / MHD
 - Mechanical, structural
 - Computational materials
- MOOSE provides a comprehensive solution: a multiscale, multiphysics simulation framework with established track record of success in nuclear fission reactors with unified, modular interfaces.
- Open, flexible frameworks can create pathways to fully integrated, whole device modeling.

Highlight: Creating iterative design workflows for ceramic breeding blankets using MOOSE (INL, ORNL, VCU)

Fusion Energy Science Collaborations

Questions?

ENERGY Office of **NUCLEAR ENERGY**