

Thermal Conductivity Measurement of Irradiated Metallic Fuels Using TREAT

Heng Ban, University of Pittsburgh Assel Aitkaliyeva, University of Florida

- ■Determine thermal conductivity & diffusivity of U-Pu-Zr fuels irradiated to **various burnup levels using TREAT pulse shaping**
- ■Develop fuel thermal property models based on pre- and post-irradiation **microstructure analysis**

[Harp, 2017]

Metal Fuel Thermal Conductivity Data

- Metal alloy fuels are historically used and studied in fast reactors, and U– 20Pu–10Zr is being studied by DOE programs
- Thermal conductivity data for irradiated fuels at different burnups are essential for fuel performance and safety design
- Thermal conductivity estimation by Bauer and Holland in 1980s
	- ^o Thermal conductivity were estimated between melted region at fuel center and sodium coolant outside cladding based on cross-section images
	- ^o Significant conductivity reduction is probably due to increased fuel porosity

Bauer, T.H. and J.W. Holland, Nuclear Technology, 1995. **110**(3): p. 407-421

Available Thermal Conductivity Data for U-Pu-Zr Fuels at Low Burnups

Bauer, T.H. and J.W. Holland, Nuclear Technology, 1995. **110**(3): p. 407-421

State of the Art Measurement Methods

insulation

Nuclear Energy

Out-of-Pile, Irradiated Fuels

■Hot-Cell basted LFA testing

- Radioactivity poses added complexity
- Testing is destructive (one burn-up) level) and only measures in axial direction

In-Pile

◼**Needle Probe & Transient Hotwire**

• Instrumentation is difficult to achieve and disturbs fuel structure

heating element and

temperature sensor

Research Goal

Nuclear Energy

Develop a thermal property measurement method with two attributes:

1. Non-Destructive

- Preserve structure of interest
- Subsequent testing

2. In-pile Nuclear Heating

- Eliminate the need for hot cell
- Utilize reactor condition
- Radial heat transport

[Carmack, 2009]

Thermal Wave Overview

Controlled Heat Generation in TREAT

Idealized Thermal Wave Response for a Simplified Fuel-Cladding-Heatsink System

Temperature Heat-sink Overpower Response Module (THOR)

Nuclear Energy

Measurement of Thermal Diffusivity - Conductivity Using Thermal Wave

Uncertainty for Measurements Based on a Single Test

Nuclear Energy

Measurement performed only at the optimal frequency. As a result, only one parameter among k and α of fuel is unknown, and the other is precisely known.

$$
u(\alpha_1|x_i) = \frac{S(x_i)}{S(\alpha_1)} u(x_i); \, u(k_1|x_i) = \frac{S(x_i)}{S(k_1)} u(x_i)
$$

- ■Over 13,000 Mark-III/IIIA/IV fuel rods (U-10Zr) and 600 U-Pu-Zr fuel rods **were cast and irradiated to burnups ranging from 10% (U-Zr) to 20% (U-Pu-Zr)**
- ■Only a tiny portion of fuels has been subjected to post-irradiation **examination. Even smaller fraction has been subjected to detailed characterization with state-of-the-art tools available now**
- ■Four TREAT experiments using U-19Pu-10Zr sample of burnups at 1.9, **4.9, 11.2 and 19.3 at% are proposed considering the limitation of NSUF TREAT scheduling and project scope.**

Ongoing Work at the University of Pittsburgh:

- **1. Develop and demonstrate the proposed measurement method via laboratory experimentation**
- **2. Quantify the capabilities, limits, and errors associated with the developed measurement method**
- **3. Investigate the applicability of the method on degraded samples to prove the relevance for nuclear fuel property tracking**

Nuclear Energy

U.S. DEPARTMENT OF

■ Temperature is measured by an IR video camera

Stage 1(Rectangular): Experimental System

Nuclear Energy

QFI InfraScopeTM MWIR Temperature Mapping Microscope

Experimental Design: Thickness of Fuel Layer

Nuclear Energy

U.S. DEPARTMENT OF ENERGY

Stage 1 (Rectangular): Thermal Contact Resistance

- Thermal contact resistance poses a technical challenge in lab experiments. It became another unknown to be determined
- It will not be an issue for reactor experiments because of sodium bonding between fuel and cladding

Stage 1 (Rectangular): Computational Fitting for Thermal Contact Resistance

Stage 2 (Cylindrical): Heating Mechanism

Nuclear Energy

■**Near volumetric heating mechanism**

■Strong heating response in ferritic stainless steels

• Negligible to no response in other materials

Stage 2 (Cylindrical): Experimental Setup

Nuclear Energy

Specimen Assembly: Experimental Setup:

Stage 2 (Cylindrical): Testing Procedure

Nuclear Energy

■**Heat specimen to quasi steady state**

◼**Test:**

- \bullet N = 24 Cycles
- Frequency sweep: 20 logarithmically spaced frequencies across [0.05 -0.3 Hz]
- ■**Post-process consists of FFT analysis to calculate phase delay between the sink temperature wave and the power**
- Use nonlinear least-squares **regression to back-out the predicted thermal properties of the fuel layer**

Stage 2 (Cylindrical): Wave Components at the Probe Point

Nuclear Energy

■Amplitude falls as frequency rises, limiting the frequency upper bound

• R_{th}= $\frac{\alpha}{\pi}$ πf

■Bias trend due to system settling (slower f tested first)

■ Low amplitude to bias ratio

Stage 2 (Cylindrical): Results & Takeaways (Phase curve & Predictions)

- **1. Thermal diffusivity sensitivity of the fuel layer is high**
- **2. Frequency sweeps are preferred to spatial sweeps**
- **3. Temp bias is high for fine gauge TC. Optical preferred.**
- **4. Heating method likely needs altered due to non-uniformity (skin depth)**

Preliminary System: Results & Takeaways (Sensitivity error source)

Nuclear Energy

U.S. DEPARTMENT OF ENERGY

■Roughly 2x as sensitive to α **than to** k

- \bullet k cancels in leading coefficient, direct dependence in Green's function
- ■Strong Sensitivity to layer and probe radial lengths

On-Going & Future Experimentation

Nuclear Energy

Future Experimentation will be twofold:

1. Enhancement of experimental heating

• Transition to Gleeble 3500 thermalmechanical physical simulation system

o Improved environmental and heating control

2. Exploratory external heating adaptation

- Can we measure properties of samples using an outer conductive layer to drive heating
	- o Open the door for supplementary degradation-based experimentation and the contraction of $[$ Dynamic systems, Inc $]$

On-Going Experimentation: Gleeble based Thermal Wave testing

Nuclear Energy

Test 2 orders of α

• 10^(−6) $[m^2/s]$

■Heating:

oUtilize high speed joule heating

Initial fuel wall temperature & power probing of an un-sheathed specimen at 1Hz using welded TC:

Future Work: Degradation Study

- ■**We can apply this method to a system with the source in external layer.**
- ■Conductive sleeve to drive **heating in a ceramic specimen**
- ■Initial sensitivity studies **show a sufficient degree of sensitivity**

Nuclear Energy

Highlights – Overall

- Recent Accomplishments:
	- Completed study of the magnetic heating-based cylindrical system
	- The refined Gleeble 3500-based cylindrical experiment has been designed and preliminary tests are underway
- **Issues (schedule/cost/technical):**
	- Delays in Pitt Gleeble installation has resulted in needing to use neighboring university's system (Carnegie Mellon)
- Look Ahead (30/60/90 days):
	- Complete modelling work (Monte-Carlo & Nondimensionalization studies) for publication
	- Begin experimental investigation of external heat source measurements & degradation studies

MARCH-SETH-THOR

- **TREAT separate Effect Test Holder (SETH)**
- **SETH** holder with a **heat sink (THOR)**
- Sample preheating to **desired temperature**
- Power shaping to **simulate harmonic heating for no more than 30 seconds**

