

Thermal Conductivity Measurement of Irradiated Metallic Fuels Using TREAT

Heng Ban, University of Pittsburgh Assel Aitkaliyeva, University of Florida

- Determine thermal conductivity & diffusivity of U-Pu-Zr fuels irradiated to various burnup levels using TREAT pulse shaping
- Develop fuel thermal property models based on pre- and post-irradiation microstructure analysis

[Harp, 2017]

Metal Fuel Thermal Conductivity Data

- Metal alloy fuels are historically used and studied in fast reactors, and U– 20Pu–10Zr is being studied by DOE programs
- Thermal conductivity data for irradiated fuels at different burnups are essential for fuel performance and safety design
- Thermal conductivity estimation by Bauer and Holland in 1980s
 - Thermal conductivity were estimated between melted region at fuel center and sodium coolant outside cladding based on cross-section images
 - Significant conductivity reduction is probably due to increased fuel porosity

Bauer, T.H. and J.W. Holland, Nuclear Technology, 1995. 110(3): p. 407-421

Available Thermal Conductivity Data for U-Pu-Zr Fuels at Low Burnups

Bauer, T.H. and J.W. Holland, Nuclear Technology, 1995. 110(3): p. 407-421

State of the Art Measurement Methods

Nuclear Energy

Out-of-Pile, Irradiated Fuels

Hot-Cell basted LFA testing

- Radioactivity poses added complexity
- Testing is destructive (one burn-up level) and only measures in axial direction

<u>In-Pile</u>

■Needle Probe & Transient Hotwire

 Instrumentation is difficult to achieve and disturbs fuel structure

Research Goal

Nuclear Energy

Develop a thermal property measurement method with two attributes:

1. <u>Non-Destructive</u>

- Preserve structure of interest
- Subsequent testing

2. In-pile Nuclear Heating

- Eliminate the need for hot cell
- Utilize reactor condition
- Radial heat transport

[Carmack, 2009]

Thermal Wave Overview

Controlled Heat Generation in TREAT

Idealized Thermal Wave Response for a Simplified Fuel-Cladding-Heatsink System

Temperature Heat-sink Overpower Response Module (THOR)

Measurement of Thermal Diffusivity -Conductivity Using Thermal Wave

Uncertainty for Measurements Based on a Single Test

Measurement performed only at the optimal frequency. As a result, only one parameter among k and α of fuel is unknown, and the other is precisely known.

$$u(\alpha_1|x_i) = \frac{S(x_i)}{S(\alpha_1)}u(x_i); u(k_1|x_i) = \frac{S(x_i)}{S(k_1)}u(x_i)$$

Parameter	Un	0.2Hz 5mm Ti		0.2Hz 10mm Ni200		0.34Hz 10mm Na		0.2Hz 6mm HT9	
		k ₁	α_1	k ₁	α_1	k ₁	α_1	k ₁	α_1
k of cladding	5%	1.8%	-0.8%	0.4%	-0.2%	1.3%	-0.5%	1.2%	-0.6%
k of heat sink	5%	-6.9%	3.3%	-5.6%	2.5%	-6.4%	2.7%	-6.4%	3.0%
α of cladding	5%	-4.5%	2.2%	-3.6%	1.7%	-5.2%	2.2%	-4.1%	1.9%
α of heat sink	5%	5.0%	-2.4%	-1.1%	0.5%	5.2%	-2.2%	-0.1%	0.0%
δ of fuel	1%	1.0%	-0.5%	-3.3%	1.5%	1.0%	-0.4%	-0.6%	0.3%
δ of cladding	1%	0.4%	-0.2%	-0.5%	0.2%	0.3%	-0.1%	0.0%	0.0%
δ of heat sink	1%	-1.4%	0.7%	0.5%	-0.2%	-1.9%	0.8%	0.5%	-0.3%
Probe Position	1%	3.3%	-1.6%	5.9%	-2.7%	4.8%	-2.0%	4.1%	-2.0%
Phase	0.5°	-6.8%	3.3%	-6.7%	3.1%	-6.7%	2.7%	-6.7%	3.2%
Total Uncerta	ainty	12.5%	6.0%	11.7%	5.3%	13.1%	5.5%	11.0%	5.2%

- Over 13,000 Mark-III/IIIA/IV fuel rods (U-10Zr) and 600 U-Pu-Zr fuel rods were cast and irradiated to burnups ranging from 10% (U-Zr) to 20% (U-Pu-Zr)
- Only a tiny portion of fuels has been subjected to post-irradiation examination. Even smaller fraction has been subjected to detailed characterization with state-of-the-art tools available now
- Four TREAT experiments using U-19Pu-10Zr sample of burnups at 1.9, 4.9, 11.2 and 19.3 at% are proposed considering the limitation of NSUF TREAT scheduling and project scope.

Composition	Burnup (at %)
U-19Pu-10Zr	1.9
U-19Pu-10Zr	4.9
U-19Pu-10Zr	11.2
U-19Pu-10Zr	19.3

Ongoing Work at the University of Pittsburgh:

- 1. <u>Develop and demonstrate</u> the proposed measurement method via laboratory experimentation
- 2. <u>Quantify the capabilities</u>, limits, and errors associated with the developed measurement method
- 3. <u>Investigate the applicability</u> of the method on degraded samples to prove the relevance for nuclear fuel property tracking

Stage 1 (Rectangular): Plane Layered System

Nuclear Energy

Temperature is measured by an IR video camera

Material type	Conductivity W/m*K	Diffusivity m²/s	Density kg/m³	Heat capacity J/kg*K
Graphite	83	64.2e-6	1820	710
h-BN	22.643	12.445e-6	2280	798
Tool Steel O1	64	17.78	7810	461

Stage 1 (Rectangular): Experimental System

Nuclear Energy

QFI InfraScope[™] MWIR Temperature Mapping Microscope

Experimental Design: Thickness of Fuel Layer

Nuclear Energy

U.S. DEPARTMENT OF

Stage 1 (Rectangular): Thermal Contact Resistance

- Thermal contact resistance poses a technical challenge in lab experiments. It became another unknown to be determined
- It will not be an issue for reactor experiments because of sodium bonding between fuel and cladding

Stage 1 (Rectangular): Computational Fitting for Thermal Contact Resistance

Frequency/Hz	0.15	0.2	0.25
Thermal contact resistance (K/W)	6.4188e-05	4.8166e-05	3.8659e-05

Stage 2 (Cylindrical): Heating Mechanism

Nuclear Energy

■Near volumetric heating mechanism

Strong heating response in ferritic stainless steels

• Negligible to no response in other materials

Stage 2 (Cylindrical): Experimental Setup

Nuclear Energy

Specimen Assembly:

Experimental Setup:

Stage 2 (Cylindrical): Testing Procedure

Nuclear Energy

Heat specimen to <u>quasi steady state</u>

■Test:

- N = 24 Cycles
- Frequency sweep: <u>20 logarithmically spaced</u> <u>frequencies</u> across [0.05 -0.3 Hz]
- Post-process consists of FFT analysis to calculate phase <u>delay</u> <u>between the sink temperature wave</u> and the power
- Use nonlinear least-squares regression to <u>back-out the predicted</u> <u>thermal properties</u> of the fuel layer

Stage 2 (Cylindrical): Wave Components at the Probe Point

Nuclear Energy

Amplitude falls as frequency rises, limiting the frequency upper bound

• $R_{th} = \sqrt{\frac{\alpha}{\pi f}}$

Bias trend due to system settling (slower f tested first)

Low amplitude to bias ratio

Stage 2 (Cylindrical): Results & Takeaways (Phase curve & Predictions)

- 1. Thermal diffusivity sensitivity of the fuel layer is high
- 2. Frequency sweeps are preferred to spatial sweeps
- 3. Temp bias is high for fine gauge TC. Optical preferred.
- 4. Heating method likely needs altered due to non-uniformity (skin depth)

	Actual	Predicted	$\frac{Actual}{Predicted}$
$\alpha_{fuel} \left[\frac{m^2}{s}\right]$	6.88e-6	7.15e-6	1.0391
$k_{fuel}\left[\frac{W}{mK}\right]$	24.2	2.40	0.099
$\alpha_{cladding} \big[\frac{m^2}{s} \big]$	8.66e-6	_	_
$k_{cladding}\left[\frac{W}{mK}\right]$	16.5	_	_
$\alpha_{heatsink} [\frac{m^2}{s}]$	2.87e-5	_	_
$k_{heatsink}\left[\frac{W}{mK}\right]$	75.8	_	_
$r_{probe}[mm]$	5.60	5.57	0.947

Preliminary System: Results & Takeaways (Sensitivity error source)

Nuclear Energy

U.S. DEPARTMENT OF

Roughly 2x as sensitive to α than to k

- k cancels in leading coefficient, direct dependence in Green's function
- Strong Sensitivity to layer and probe radial lengths

On-Going & Future Experimentation

Nuclear Energy

Future Experimentation will be twofold:

- 1. Enhancement of experimental heating
 - Transition to <u>Gleeble 3500</u> thermalmechanical physical simulation system
 - \circ Improved environmental and heating control
- 2. Exploratory external heating adaptation
 - Can we measure properties of samples using an <u>outer conductive layer</u> to drive heating
 - Open the door for supplementary degradation-based experimentation

[Dynamic systems, Inc]

On-Going Experimentation: Gleeble based Thermal Wave testing

Nuclear Energy

Test 2 orders of α

• 10^(-6) [m^2/s]

■Heating:

 Outilize high speed joule heating

Initial fuel wall temperature & power probing of an un-sheathed specimen at 1Hz using welded TC:

Future Work: Degradation Study

- We can apply this method to a system with the source in external layer.
- Conductive sleeve to drive heating in a ceramic specimen
- Initial sensitivity studies show a sufficient degree of sensitivity

Highlights – Overall

- Recent Accomplishments:
 - Completed study of the magnetic heating-based cylindrical system
 - The refined Gleeble 3500-based cylindrical experiment has been designed and preliminary tests are underway
- Issues (schedule/cost/technical):
 - Delays in Pitt Gleeble installation has resulted in needing to use neighboring university's system (Carnegie Mellon)
- Look Ahead (30/60/90 days):
 - Complete modelling work (Monte-Carlo & Nondimensionalization studies) for publication
 - Begin experimental investigation of external heat source measurements & degradation studies

MARCH-SETH-THOR

- TREAT separate Effect Test Holder (SETH)
- SETH holder with a heat sink (THOR)
- Sample preheating to desired temperature
- Power shaping to simulate harmonic heating for no more than 30 seconds

