MATERIALS QUALIFICATION THROUGH NSUF: CASE STUDY ON PM-HIP ALLOYS

<u>Janelle P. Wharry</u>¹, Caleb D. Clement¹, Saquib Bin Habib¹, Wen Jiang¹, Yangyang Zhao¹, Sri Sowmya Panuganti¹, Yu Lu^{2,3}, Yaqiao Wu^{2,3}, Donna P. Guillen⁴, David W. Gandy⁵

¹ Purdue University; ² Boise State University; ³ Center for Advanced Energy Studies; ⁴ Idaho National Laboratory; ⁵ Electric Power Research Institute

NSUF Users Meeting @TMS Annual Meeting 7 March 2024 Supported by:

DOE Nuclear Science User Facilities 15-8242

Electric Power Research Institute

School of Materials Engineering

Project Team Members at Purdue

Caleb D. Clement Ph.D. 2023 Now at Westinghouse Saquib Bin Habib Ph.D. expected 2026

Sri Sowmya Panuganti M.S. 2022

Yangyang Zhao Post-Doc 2019-2021

School of Materials Engineering

Wen Jiang Post-Doc 2023 Now at Xi`an Jiao Tong

Objective

Demonstrate the use of several NSUF partner facilities and capabilities for an irradiation and post-irradiation examination (PIE) campaign to generate qualification data for alloys fabricated by powder metallurgy with hot isostatic pressing (PM-HIP).

PM-HIP Positioning Compared to Other Fabrication Methods

Overview of PM-HIP Process

Benefits of PM-HIP

BSU-8242 Experiment Matrix

Jiang, et al. under revision (also on	Alloy	Process	Target Dose [dpa]	Target Temp [°C]	Micro- structure	Tensile
Clement, et al. MSE A 857 (2022) 144058 Wharry, et al. Data in Brief 48 (2023) 109092	SA508	PM-HIP, Forged	1	300	\checkmark	\checkmark
			1	400	\checkmark	
	Grade 91	PM-HIP, Cast	1	400		\checkmark
			3	400	·	√
	Alloy 625	PM-HIP, Forged	1	400	\checkmark	\checkmark
			3	400	\checkmark	\checkmark
Wharry, et al. Frontiers (2023) Saquib Bin Habib, March 4, 11:45 am, Regency Q	Alloy 690	PM-HIP, Forged	1	400	\checkmark	\checkmark
			3	400	\checkmark	\checkmark
	316L SS	PM-HIP, Wrought	1	400	<u> </u>	
			3	400		

BSU-15-8242 Irradiation Campaign in ATR

NSUF Capability Neutron Irradiation

NSUF Facility Advanced Test Reactor, Idaho National Laboratory

ASTM standard tensile bars: yield strength, modulus, % elongation

TEM discs: microstructure, nanoindentation

Miniature CTs: fracture toughness

3/5/24

Tensile Testing & Fractography – 316L Stainless Steel

Nanoindentation – 316L Stainless Steel

Conclusions

- NSUF has enabled us to generated high-fidelity irradiation performance data on common PM-HIP nuclear structural alloys – microstructure evolution, microchemical evolution, mechanical property evolution.
- Results generated can be used within ASTM and ASME to support code qualification and specifications development for PM-HIP products in the nuclear power industry.

