Accelerated irradiation creep testing of structural materials for advanced reactors

Dr. Charles A. Hirst ^{1,2}, M. Warwick ¹,

W. Peterson¹, B. Arms¹, K. G. Field¹

¹ University of Michigan, Ann Arbor, USA
² University of Wisconsin-Madison, USA

2024 NSUF Users Organization Annual Meeting In-situ Irradiation, Characterization, Mechanical Testing, & Corrosion

Irradiation can increase creep rates significantly.

Ion-irradiation creep facilities can accelerate testing.

0D experiments are slow to explore parameter space.

Creep deformation mechanism map for 316 stainless steel.

Zinkle and Lucas, Fusion Mater. Semiann. Progress Report (2003) DOE/ER-0313/34

Tapered specimens create multiple stress regions in a single ion-irradiation experiment.

Bulk samples are prepared using EDM, followed by mechanical- and electro- polishing.

RTE #4654 – 'Quantifying the effect of simultaneous vs. sequential irradiation on creep performance of additively manufactured austenitic stainless steel' (PI Massey).

RTE #4817 – 'Investigating the evolution of M23C6 and MX-type precipitates in additively manufactured Grade 91 steel under high T. simultaneous & sequential stress & irradiation' (PI Narra)

The current MIBL irradiation creep stage uses W deadweights to apply a constant load.

Imaging captures local temperature & strain fields.

Multiple non-contact extensometry techniques are being evaluated to extract strain at each position.

Credit: Mackenzie Warwick & Ben Arms

Laser Speckle Extensometer (LSE) Displacement

Digital Image Correlation (DIC) Displacement

FIB lift outs are used to characterize microstructural evolution: relationship to applied stress is important.

Perfect loops Edge-on perfect loops Faulted loops Edge-on faulted loops

Initial characterization shows distinct microstructures.

158 MPa

316 MPa

On-Zone S/TEM (011) Average length: 59.3 ± 7.1 nm

On-Zone S/TEM (001) Dislocation Network Density: 3×10¹⁴ m⁻²

Credit: Mackenzie Warwick

Further TEM characterization is in progress...

237 MPa

On-zone S/TEM BF <001>

On-zone S/TEM DF <001>

237 MPa

Now characterization has become the bottleneck!

Credit: Mackenzie Warwick

Accelerated irradiation creep testing of structural materials for advanced reactors

Nuclear materials' properties depend on the precise combination of irradiation, temperature, and load.

Simultaneous ion-irradiation creep fatigue (ICF) will be investigated at the Michigan Ion Beam Lab*

Specimen thickness & microstructural length scale are critical parameters.

Grade 91

Zhang et al., Int. J. Fatigue, 125 (2019) 440-453

Alloy 709

Zhang et al. J. Nucl. Mater. 553 (2021) 153052 The effects of sample geometry and creep-fatigue loading waveform will be investigated.

Standard size (SS) Reduced-thickness (RedT) Stress intensity ratio (R) Hold time under load.

Miniature tensile rig received and tested within SEM.

MT1000 within exoSEM

within TESCAN MIRA3

Beamline chamber in the process of being designed.

Independent grip heaters allow for the creation of temperature gradients along the sample length.

1D gradient experiments will accelerate exploration.

Creep deformation mechanism map for 316 stainless steel.

Zinkle and Lucas, Fusion Mater. Semiann. Progress Report (2003) DOE/ER-0313/34

Accelerated irradiation creep testing of structural materials for advanced reactors

Acknowledgements

U.S. Department of Energy

1. Accelerated irradiation creep testing coupled with self-adaptive accelerated molecular dynamics simulations for scalability analysis.

2. Mechanism driven evaluations of sequential and simultaneous irradiation-creep-fatigue testing.

Accelerated irradiation creep testing of structural materials for advanced reactors

2024 NSUF Users Organization Annual Meeting In-situ Irradiation, Characterization, Mechanical Testing, & Corrosion

Elevated temperatures & stress cause thermal creep.

Increasing temperatures decrease the lifetime.

Choudary et al. Procedia Eng. 86 (2014) 335 - 341

Stress relaxation measurements are inaccurate at long times and difficult to measure in-reactor.

 $\dot{\varepsilon} \propto \sigma(t)$

strain rate depends on stress which varies over time.

Grossbeck and Mansur, J. Nucl. Mater. 179 (1991) 130 Causey et al. J. Nucl. Mater. 159 (1988) 101

MEMS irradiation creep can perform parallel tests.

Electropolishing – Methodology

- Voltage source, set to 40V
- Acid solution; 10% Perchloric acid, 90% Methanol
- Negative lead, connected to platinum mesh
- 4 Methanol bath, cool to -45 °C
- Sample cleaning process; Acetone, Methanol, and Ethanol for 20 seconds twice each

Sample failed under sequential loading at high T.

Paint speckle may affect emissivity of the sample.

Fusion heat loads & thermal stresses will be cyclical.

time

NewTec MT1000 tensile rig

Constraints – FOV in Vertical Loading

Constraints – FOV in Horizontal Loading

