Integrated analysis of microstructure and thermal conductivity in irradiated materials

1

Marat Khafizov, The Ohio State University

Acknowledgements

OSU Team:

- Joshua Ferrigno (PhD)
- Saqeeb Adnan (PhD)
- Erika Nosal (PhD)
- Alumni: Yuzhou Wang (PhD, Postdoc), Vinay Chauhan (PhD)

Funding:

- DOE Basic Energy Sciences Center for Thermal Energy Transport under Irradiation (EFRC)
- Idaho National Laboratory Directed Research Program (INL-LDRD)
- DOE NSUF RTE

Collaborators:

Thermal conductivity measurements:

• David Hurley, Zilong Hua, Amey Khanolkar, Tsveti Pavlov (INL),

Samples, Irradiation and characterization:

• Lingfeng He (NSCU), Kaustubh Bawane (INL), Matt Mann (AFRL), Lin Shao (TAMU), and Fabiola Cappia (INL)

Modeling:

2 • Linu Malakkal, ShuxiangZhou, Chao Jiang (INL), Anter el Azab (Purdue), Chris Mariannetti(Columbia), Miaomiao Jin (PSU),

Temperature dependent microstructure

$$
D = D_0 \exp(-Q_a/k_B T)
$$

Grain growth:
$$
d^2 - d_0^2 = Dt
$$

Fission gas release: $f_c = 4 \left(\frac{Dt}{\pi a^2}\right)^{\frac{1}{2}} - \frac{3}{2} \frac{Dt}{a^2}$

Nuclear fuel

- Strong temperature gradient
- Fission rate is also not uniform
- Microstructure evolution is governed by atomic diffusion with Arrheniustype temperature dependence

UO₂ conductivity correlations in FPCs

 $K = K \cdot FD \cdot FP \cdot FM \cdot FR$

- where
- thermal conductivity of unirradiated, fully dense urania K_{o} $=$
- **FD** factor for dissolved fission products \equiv
- factor for precipitated fission products FP $=$
- factor to correct for the Maxwell porosity effect FM $=$
- FR factor for the radiation effect $=$

Thermal conductivity of unirradiated, fully dense urania and factors included in the I are described by the Equations 2.3-3 through 2.3-7.

- Common correlation are by Lucuta and Ronchi
	- G. Lucuta, *et al*.,*.* JNM 232, 166-180 (1996)
	- Ronchi et al, JNM 327 (2004) 58
- Limitation of current fuel

performance codes

- No spatial resolution
- No detailed microstructure information
- NE's NEAMS and BES's FERC address these limitations

TEM images of Krypton implantation in UO2 showing a) dislocation loops, b) bubbles over focus, and c) bubbles under focus.

HE OHIO STATE UNIVERSITY

P

Thermal conductivity in engineering fuel performance codes

Ferrigno et. al J. Nucl. Mater. 573, 154108 (2023)

HE OHIO STATE UNIVERSITY

Measurement of thermal conductivity/diffusivity

- Methods applied to fuels are typically transient and thus measure thermal diffusivity
- Laser flash analysis is typically used for bulk measurements
- Modulated thermoreflectance is commonly used for studying thermal transport in thin films for thermal management of electronic devices and thermoelectrics

Need for spatial resolution techniques

Sonoda et al,
1 THE OHIO STATE UNIVERSITY

- **•** Irradiated fuels have nonhomogeneous damage profile
	- Constituent redistribution in U-metal fuels, $UO₂$ high burnup structure, TRISO fuel
- Advanced composite materials
	- SiC/SiC fiber composites
	- Corrosion resistant coatings for cladding
- Fundamental studies that utilize ion beam irradiation
- Samples with small dimensions and irregular shapes

Khafizov *et al.*, Nucl. Instrum. Meth. B 325, 11 (2014) Hurley *et al.*, Rev. Sci. Instrum. 86, 123901 (2015) Khafizov et al., J. Mater. Res. 32, 204 (2017)

 $\rho\overline{\mathcal{C}}$

The slope of phase profile is larger in irradiated sample (red) than in reference (blue), an indication of thermal conductivity reduction in irradiated sample

 $i\omega T_{\omega} =$

Conductivity of individual layers in TRISO

*Bulk, nonporous region Rochais *et al*. Nucl Engin. Des. 238 (2008) 3047

- TRISO particle is a primary candidate fuel for advanced high temperature reactors and fully ceramic encapsulated ATF
- Conductivity of individual layers important for predicting transient behavior was measured

Khafizov et al., J. Mater. Res. 32, 204 (2017) Moorehead et al., Materials Today Advances 21, 100455 (2024)

HE OHIO STATE UNIVERSITY

Ion irradiation and PIE (Transmission electron microscopy)

- Ion irradiations for ex-situ characterization are performed using ion beams at Texas A&M and U Wisconsin (2 MeV protons)
- In-situ ion irradiation and TEM were performed at ANL- IVEM (1 MeV Kr ions)
- Access through US DOE Nuclear Science User Facility (NSUF)

HE OHIO STATE UNIVERSITY

Pakarinen et al., J. Nucl. Mater. 454 ,283 (2014) Chauhan *et al.*, Materialia 15, 101019 (2021)

Lingfeng He *et al.*, Acta Materialia 208, 116778 (2021) Dennett *et. al.*, Acta Mater. 213, 116934 (2021) 11

Impact of point defects on conductivity of $UO₂$

- \bullet UO₂ sample have been irradiated at Wisconsin IBL using light ions
- There is correlation between conductivity reduction and lattice constant expansion

Pakarinen et al., J. Nucl. Mater. 454 (2014) 283 Khafizov *et al.*, Acta Materialia 193, 61 (2020)

Impact of dislocation loops in H^+ irradiated CeO₂

Faulted loop

Dislocation loops in bright field TEM Nature of loops by HRTEM

(b) $(11\bar{1})$ (c) (c) \bullet 50 nm 50 mm 10_{nm}

 (111)

THE OHIO STATE UNIVERSITY

Khafizov *et. al.*, J. Amer. Ceram. Soc . 102, 7533 (2019) Chauhan *et. al.*, Materialia 15, 101019 (2021)

Integrated analysis in proton irradiated $ThO₂$

 $PS = C_{\dot{t}} PS_{\dot{t}}$ - Positron spectroscopy

 $P = C_i P_i$ - Photoluminescence spectra

 $A = \mathit{C}_i A_i$ - Absorption spectra

HE OHIO STATE UNIVERSITY

Dennett *et. al.*, Acta Materialia 213, 116934 (2021) Deskins *et. al.*, Acta Materialia 241, 118379 (2022) Lingfeng He et al., J Amer. Ceram. Soc. 105, 5419 (20220

14

Integrated analysis in proton irradiated ThO₂

HE OHIO STATE UNIVERSITY

Dennett *et. al.*, Acta Materialia 213, 116934 (2021)

Radial characterization of thermal conductivity for the validation of fuel performance models

- Characterization of MOX fuel along the radial direction provides a validation of material properties of nuclear fuel performance models.
- Access through DOE NE NSUF RTE led by BYU and Tsveti Pavlov

Thermal conductivity microscope Adkins, Cynthia A, et al.,. INL/EXT-19-55902 (2019)

- Thermoreflectance-based conduction measurement.
- Capable of measuring irradiated nuclear fuels with very high burnup
- Discretized measurements down to 15 μ m.
- Allows for validation of radial thermal conductivity models and integrals

F. Cappia, et al., INL/EXT-21-61757, 2021

Estimating radial thermal conductivity

- Comparison to Lucuta-Inoue correlation
- Good agreement in the central region of fuel, but unable to capture the complexity of the high burnup structure.
- Further data needed about the midradial regime to adequately describe porosity migration, and lack of Pu enrichment.

HE OHIO STATE UNIVERSITY

19% FIMA SFR MOX sample

Impact of clustering on thermal conductivity

- In insulating materials, defects lead to reduction in thermal conductivity
- Clustering of point defect leads to recovery of conductivity

OHIO STATE UNIVERSITY

• NEMD simulations using empirical potentials support this picture

Hurley *et al.*, Chemical Reviews 122, 3711 (2022) Miaomiao Jin *et. al.*, J. Nucl. Mater. 566, 153758 (2022); Dennett *et. al.*, APL Materials 8, 111103 (2020)