8/26/2025 NSUF TEM DATA MANAGEMENT WORKSHOP

IN-SITU TEM DATA CHALLENGES AND OPPORTUNITIES

WEI-YING CHEN

MEIMEI LI

IN SITU ION IRRADIATION/IMPLANTATION

High energy Ion Irradiation		
Ion Energy/Types	 Implanter: 50 keV – 1 MeV, H, inert gases, elements Al to Au Tandem: 2.5 MeV Ni 	
Ion Flux	$10^8 - 10^{12}$ ions/cm ² /s (10^{-7} – 10^{-3} dpa/s)	
Beam size	Uniform beam of 1.5 mm \varnothing on sample center	
Dosimetry	Real-time dosimetry (Faraday cup in TEM column)	

Helium ion source	
Ion Energy/Types	10-20 keV He
Ion Flux	10 ¹¹ – 10 ¹³ ions/cm ² /s
Beam size	Uniform beam of 1 mm \varnothing on sample center
Dosimetry	Faraday cup in TEM column measured before and after irradiation

The two-floor design ensures a low-angle between ion and electron beams for real-time imaging, and mitigation of mechanical vibration from the ion beamline.

TEM holders for in situ TEM

In situ heating (20 to 1100°C)	 High temperature (20-800°C, ±3°C), double tilt (±40°, ±20°) High temperature (20-1100°C), single tilt (±40°)
<i>In situ</i> cooling (20 to 300 K)	- Low temperature (20-300°K), double tilt (±40°, ±20°)
<i>In situ</i> straining (100 K to 400°C)	 Straining, high temperature (20-400°C), single tilt (±40°) Straining, low temperature (100-400°K), single tilt (±40°) PI95, Room temperature, Single tilt (±40°)
In situ corrosion	 Environmental Cell TEM Stage: Environmental chamber (20-300°C) TEM stage (20 - 700°C)
Tilt-rotation (tri-axis)	- 3D tomography

UN under *in-situ* ion irradiation at 1000°C

Kosmidou et al. Acta. Mater. 288 (2025) RTE 23-1868

IN-SITU TEM AND AI/ML FOR NUCLEAR MATERIAL RESEARCH

A Mutually-reinforced scheme to accelerate discovery

IN-SITU TEM CAN HELP NRDS SHAPE FUTURE NUCLEAR MATERIAL RESEARCH

A Database, A Platform and A GPT

- Manage of TEM image and image annotations
- Train and maintain CV models for defect analysis of TEM images
- Maintain a web-based platform to analyze the NRDS images with those CV models
- Produce synthetic TEM images Show me the TEM image of 316 SS irradiated at 3.7 dpa at 513°C
- Train and maintain regression models on CV analyzed data. Predict material property – What is the dislocation loop density in 316 SS irradiated at 3.7 dpa at 513°C?

TEM DATA SPECIFICATIONS IN IVEM

Image specs (Gatan OneView Camera)

- Resolution: 4K, 2K, 1K, 512
- File size: (32-bit, 64 MB for 4K image)
- File format: DM3, DM4 (Gatan proprietary format of TIFF that include microscope metadata)

TEM image Data types

- Bright field image
- Dark field image
- Diffraction pattern
- EDS spectrum

Videos

- Frame rate: 313 fps (maximum)
- File size: 60 GB for typical 1 hour video (~4 dpa for 10-3 dpa/s) with 1K resolution and 1 fps.
- Recording:
 - 1. DigitalMicrograph each frame is saved as one dm3 file
 - 2. ANL system with data bar (screen recording 15 fps)

Challenges

Taking long video in high resolution is difficult due to hardware limitation

IMPORTANT METADATA FOR TEM IMAGES IN IVEM

Associated information for each TEM image (that could be useful for the ML endeavor at NRDS)

Sample

- Material (multi-phase)
- Foil thickness
- Sample preparation method (e.g., FIB, electropolishing)
- Geometry (e.g., disc, lamella, strip)

Irradiation/implantation condition

- Ion type
- Accelerator
- Ion Energy
- Ion source

beam

- Ion flux
- lon charge state
 Rastered/defocused
- Ion fluence
- Temperature
- Electron
- History

Image condition

- Magnification pixel size
- Defocus
- Crystal orientation of the image
- g-vector and diffraction contrast condition
- Image type (eg. BF or DF)
- Sample tilt
- STEM/TEM

Other conditions

- Load-displacement
- Corrosion (e.g., liquid cell, gas)

Challenges

- How to save those information along with the images in NRDS database?
- How to label ROI to link images with different magnification/imaging condition?
- Not practical to log all those info in the filename

FOIL SURFACE EFFECTS AND LOOP DENSITY MEASUREMENT

High mobility of point defects and defect clusters at high temperature results in denuded zone close to the foil surface of TEM specimen.

Al_{0.3}CoCrFeNi 500C 1 dpa

t=84 nm SFT

t=103 nm SFT+loop

t=154 nm SFT+loop

EFFECT OF SAMPLE ORIENTATION ON THE DEFECT IMAGES

- The shape and the contrast of the image of irradiationinduced defects is sensitive to the imaging condition (crystal orientation etc.)
- The computer vision models need to be able to recognize all those variants.
- (Calcuated diffractrion pattern for crystal orientation)

Chen, Wei-Ying, et al. "Characterization of dislocation loops in CeO2 irradiated with high energy Krypton and Xenon." Philosophical Magazine 93.36 (2013): 4569-4581.

Tilting information of TEM images can be used to perform 3D tomography

- Spatial relationship between defects/objects in 3D
- Enable foil surface effect studies

Ni after in-situ He ion implantation at 500°C

Chen, Ward, Mei (ANL, AMMT)

IN-SITU VIDEO DATA IN IVEM

Challenges specific for in-situ video data:

- Extremely large number of images (1k-10k) each video where each image corresponds to different dose and temperature, stress condition, and likely dose rate.
- Operator changing imaging conditions (e.g. magnification, ROI, foil thickness) during video recording.
- Sample tilting during irradiation changing the diffraction contrast and focus.
- Current camera not suitable for long diffraction pattern recording

Best practice to obtain good video data:

- Lower ion flux if possible
- Give holder time to stabilize from thermal drift
- Work on areas with relatively thicker foil thickness

DATA STORAGE AND TRANSFER IN IVEM

Storage

- Gatan camera computer user data kept locally for around 1 year
- Box mostly for images
- Storage cluster in ANL mostly for video files

Transfer

- (Fresh) Hard drive during user visit
- Box most convenient for data transfer of small batch size.
- Storage cluster in ANL use Globus for transferring data

Challenge

Transfer large video files (several hundreds GB to TB each project) to users outside ANL.

RECOMMENDATIONS ON FILENAME CONVENTION AND WORKFLOW

- In DigitalMicrograph, use the Global info session info save numbered
- Use serial number
- Manual saving filename (the filename by auto-save won't contain specific and irradiation condition).

My current filename convention:

Challenge

Need better way to save meta data

