

The Nuclear Science User Facilities Program

- Established in 2007
 - To be the U.S. Department of Energy Office of Nuclear Energy's first & only dedicated user facility
 - To open the national laboratories to university researchers
- Founded at Idaho National Laboratory (INL)
 - INL remains the lead and primary institution
- NSUF operates similarly to other user facilities in the United States
 - Fundamental Research basic and applied research in science and engineering, intended to be published and shared broadly with the scientific community
 - Competitive proposal processes for access
 - No cost to user for accessing capabilities
 - No travel funding to users, etc.

The Nuclear Science User Facilities (NSUF) Program

Unique aspects of NSUF

Consortium of facilities/capabilities

- 21 institutions across the United States
- ->50 major facilities and laboratories
- NSUF efficiently leverages existing investment in physical capabilities by utilizing excess capacity.
- Funding to partners covers only the costs for the awarded access project

NSUF offers multiple capabilities to a single scientific area

 Fundamental irradiation effects in nuclear fuels and materials important to US nuclear energy development

Large projects can last up to 7 years

- Major projects can include design, fabrication, transport, neutron irradiation, post-irradiation examination, and final disposition.
- All projects are fully forward funded at the start.

NSUF research areas cover all technical readiness levels

Neutron Reactors

12 reactor facilities at national laboratories and universities including the Advanced Test Reactor at INL

Gamma & Ion Irradiation

7 gamma irradiation facilities and 7 ion beam facilities at national laboratories and universities

Post-Irradiation Examination

Multiple hot cell and broad post-irradiation examination facilities including advanced characterization methods

Beamlines

Synchrotron and neutron beamlines for nuclear fuel and materials studies

Computational Resources

Scientific high-performance computing capabilities for advanced modeling and simulation at INL

NSUF offers the best capabilities across the nation

Cutting-Edge Resources: Access to infrastructure and associated capabilities across 21 partner sites

Open access: Available to industry, academia, and national labs for non-proprietary R&D

Education and training:

Workshops, webinars, and handson skill development

Impact: Increase understanding to drive innovation across nuclear energy technologies

Simulated Reactor Environments: Neutron Irradiation

Simulated Reactor Environments: Ion Irradiation

In Situ TEM

In Situ TEM

Hot Cells

Simulated Reactor Environments: Mechanical Testing

Hardness/ Bend test/ Tensile/ Creep/ Fatigue/ Compact tension/ Charpy impact (toughness)

Advanced Microstructure Characterization Capabilities

- Optical metallography
- Scanning electron microscopy (SEM)
 - BSE/EBSD/FIB
- Transmission electron microscopy (TEM)

Spectra 300 STEM STEM resolution 50 pm (125 pm at 30kV)

Advanced Microstructure Characterization Capabilities

- Atom probe tomography (APT)
- Electron Probe MicroAnalysis (EPMA)
- Energy Dispersive Spectroscopy (EDS)
- Electron Energy Loss Spectroscopy (EELS)

WDS maps of a TRISO fuel particle

TEM images and EDS maps of irradiated fuel particle

High Performance Computing (HPC) resources

NSUF HPC systems support a wide range of users and programs

- Teton (2026)
 - 15.6 Petáflops performance393,216 AMD 9965 Turin cores

 - 1024 nodes 384 cores/node 768GB/node memory
- Windriver (2025)

 - 5.4 Petaflops performance94,416-core Dell CTS-2 system
 - 211 TB total memory
- Bitterroot (2024)
 - 2 Petaflops performance
 - 43,008-core Dell CTS-2 system
 - 90 TB total memory
- Hoodoo (2021)
 - Machine Learning Cluster with 108 A100 GPUs
- Sawtooth (2020)
 - 5.6 Petaflops performance (was #37 on Top 500 list in 2020)
 99,972 compute cores HPE SGI 8600 system

 - 395 TB total memory

Teton

Bitterroot & Windriver

Sawtooth

Nuclear Research Data System (NRDS)

NSUF 20-4118. Tritium Permeation from High Temperature Filbe under Neutron Irradiation

NSUF 20-4118. Tritium Permeation from High Temperature Filbe under Neutron Irradiation

NSUF 19-2844: Multi-Modal Serial Sectioning and Synchrotron Micro-Computed Tomography Analysis of High

Create Dataset

Images from NRDS Portal

NSUF Access Award Projects Summary: FY07-FY25

- Total NSUF Access Award Funding: \$138M
- 838 total projects awarded
 - 45 CINR type projects executed
 - 32 CINR type projects currently ongoing
 - 689 RTEs executed
 - 73 RTEs ongoing
- Awards distribution by institution type
 - 507 projects to 55 U.S. universities
 - 260 projects to 10 national laboratories
 - 37 projects to 15 industrial users*
 - 42 projects to 21 international researchers

^{*} All NSUF access awards support non-proprietary fundamental science and are intended for full public release

NSUF Funding Calls

- Consolidated Innovative Nuclear Research (CINR NOFO)
 - One call per year
 - Projects include design, analyses, fabrication, transport, irradiation, disassembly, PIE, disposition
 - Possibility to also receive user R&D funding on university topic areas
 - Guidance on project costs and timelines

Neutron Irradiation + PIE	\$0.5M - \$4.0M	≤7 years
Neutron Irradiation only	up to ~\$750K	3 years
PIE only	up to \$250K	3 years
Ion or Gamma Irradiation + PIE	up to \$250K	3 years
Ion or Gamma Irradiation only	up to \$100K	3 years
Beamlines at other user facilities	(cost included)	3 years

CINR awarded projects up to FY24 by research field

Number of awards by field

Value of awards by field

NSUF User Access Opportunities: Rapid Turnaround Experiments

- Rapid Turnaround Experiments (RTEs) historically have had up to 3 calls/year and 1 SuperRTE (new in FY 24)
 - Limited funding, executed within 9 months (or 12 months for the SuperRTE)
 - Projects are selected through open competitive proposal processes
 - Proposals welcome from university, government laboratory, industry, and small business researchers
 - Only non-proprietary projects accepted. All awarded projects are fully forward funded

Answering the need for a nuclear energy material

If you need a material for a nuclear energy system, <u>start at the bottom and work upward</u>. Activities higher up the pyramid are costlier and will take more time.

- 1. The material might already be in the marketplace. Search for ASME code cases.
- 2. Perhaps there is not a qualified material, but there has been research. Do a search of the <u>academic</u> literature.
- 3. Maybe there has been research, but it doesn't answer your questions, find the project data at NSUF's <u>Nuclear Research Data System</u> and do your own analyses.
- 4. If you need to create your own data, find material specimens in the <u>Nuclear Fuels and Materials</u> <u>Library</u>.
- 5. Finally, if all else has failed, get your data from performing a new neutron <u>irradiation test</u>.

Irradiation Testing

NFML + PIE

NRDS Data

Journal Articles

Codes and Standards

NSUF User Data Workshops

This is planned to be the first of many similar efforts to cover NSUF capabilities

Desired Workshop Outcome

- Materials Characterization Best Practices
 - Metadata
 - Data structures
 - Data quality
 - Suitability for benchmarking/model training

What isn't covered here

- Data Management Policies
 - Exclusivity
 - Publishing
 - Proprietary protections

NSUF Partners (2023) and Users Organization (2025)

