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HIPPO

HIPPO meets ERNI| & BERT -
combining diffraction and imaging for
characterization of nuclear materials

1 HIPPO: High-Pressure/Preferred Orientation
Alexander M. 1L0ng ) (PI of NSgF 1S proposal)’ 3 ERNI: Energy-resolved neutron imaging
Sven C. Vogel', Tsviki Y. Hirsh4, Adrian S. Losko BERT: Bragg-edge radiography & tomography

Los Alamos National Laboratory, Los Alamos, NM, USA
2Soreq Nuclear Research Center, Yavne, Israel
3Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Garching, Germany
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NSUF Instrument Scientist Proposal by Alex Long

° Pl Alex Long (FP5/ERN| NSUF Visions @ LANSCE
|nStru me nt SC | e nt| St) Elevating Neutron Resonance Imaging Technigues at LANSCE for Next Generation Nuclear Materials Research

° 1 1 OK awa rded FY24 Mission Statement:

We aim to advance neutron resonance imaging (NRI) techniques at the Los Alamos

® O . 04 FTE (~2 wee I(S) fo r MNeutron Science Center (LANSCE) by integrating NRI capabilities with other pulsed-neutron
Sve N Vogel (H I P PO characterization techniques, expanding its sensitivity to lighter isotopes, and enhancing its
. . . accessibility to the broader NSUF scientific community. Through these initiatives, we will
InStru me nt SCle ntl St) provide more comprehensive measurements of nuclear materials, expedited executions of
° Goa lS: MNSUF RTE awards, and foster a collaborative and engaged community of researchers, committed
. . . to advancing NRI-based characterization techniques within the NSUF program.
* Integrate imaging with
TOF diffraction
— less beam time . .
needed This presentation:
* Simplity data analysis * What was accomplished

—> easiler access

* Why is this useful for NSUF

~
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High-Pressure/Preferred Orientation
diffractometer HIPPO at LANSCE

General EJU rpOSE TOF diffl"a ctometer Sample Chamber Riug of Detector Panels at
- Crystal structure analysis
- Texture measurements
- Sample environments for
temperature, stress, pressure,
magnetic field etc.

. 35°<20<150°, 0.1A<A<184, 0.37%<Ad/d<1.8%

o Moderator-sample: 8.87 m

o Measurement time for texture: ~10 minutes

o Measurement time for powder: <1 minute

e Beam spot: 10 mm @, 14mm penumbra

o Thermal flux: ~107 n/s/cm? at 90 microA proton current

« Detector coverage: 4.9 m?, ~20% of 47
(1200 3He tubes on 53 panels)

« Sample chamber: ~1m3, 73.4cm & opening

+«— 40°,60°. 90", 120°, 145"

=i AN S ¥® Los Alamos

Los Alamos Neutron Science Center
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Wenk et al., NIM, 515 (2003) 575. Vogel et al., Powder Diffraction, 19 (2004) 65.
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Neutron Diffraction: Micro- & Crystal Structure

* Diffraction provides information on
microstructure (phase fractions, texture, strains
etc.) and crystal structure (lattice parameters,
atom position, atomic displacement
parameters etc.)

* Applications include changes of micro- and
crystal structure as a function of temperature,
irradiation etc.

e Data relevant to inform and benchmark models

 Example: NSUF funded investigation of the U-Zr
phase diagram (“In-Situ Phase Analysis of
Phase Transitions in U-(6, 10, 20, 30) wt%/Zr
Fresh Fuels”, 18-1437, Walter Williams)
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Fig. 1. A view of the Bauer and Rough phase diagram [13,14] (red) plotted witt
Sheldon and Peterson phase diagram [12] (black) from 0 to 60 at.% Zr (0-36.5 wt.5
Zr) illustrating the different number of isotherms in each description of the U-Zi
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* Raw Data
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Feed Journal of Nuclear Materials

Los Alamos Neutron Science Center

—y'-U-Zr and ordered y"-U-Zr
A) (211) T=678°C (110)
Phase transformations and thermal expansion coefficients of L 0-4‘ \\ chi2=1.28 1.24
unirradiated U-X wt.% Zr (X = 6, 10, 20, 30) measured via neutron 0 0. 2‘ ;
diffraction 0 pueee *‘""‘“‘"”“* b Mgty
25 255
W,J. Williams®*, S.C. Vogel®, M.A. Okuniewski B) 14 o T 673°C
2 04 Y A
S 0.2} Ch =1.521.34 |
2 Ot Vi 1, -
108, 2 Mo 5, 20
ok org/ 10,1007 ® T - 14 5 25 255
05020 T e, Mot & Mot Soiety Q) T=669°C
T 04 3 [l
IN-SITU CHARACTERIZATION TECHNIQUES FOR INVESTIGATING NUCLEAR MATERIALS E o02f ,1’ % Chi2=1.951.49 | &
2 o.,..-,....« ity A -
. ) ) . . 15 o npjqop 25 255
In Situ Neutron Diffraction Study of Crystallographic Evolution D)" T=664°C
and Thermal Expansion Coefficients in U-22.5 at.%Zr During » 04| Y . A
A I 0.2f i Y% Cchiz=2.381.57/ "%
nnealing 0 bt NN o et
P 14 15 25 255

124 . a ; i
W.d, WILLIAMS 5, M.A. OKUNIEWSKL' $.C. VOGEL, d-spacing [A] d-spacing [A]



q el T - =Y g
-l 1 Nuclear Science é_',
Q I Sul User Facilities ~ SHIESRPE S

HIPPO
Neutron Diffraction: Micro- & Crystal Structure
wt.% Zr
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Neutron Diffraction: Micro- & Crystal Structure
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Energy-resolved Neutron Imaging: Spatial
distribution of isotopes, micro-, & crystal structure

* Combination of short-pulsed neutron source at
LANSCE and suitable detectors enables analysis
of neutron transmission data for each pixelin a
radiography

* Map isotopes densities (U235, U238, Pu239, H
etc.) from resonances

* Map phases and lattice parameters from Bragg-
edges

* Example: 3D isotope densities in U-20Pu-10Zr-
3Np-2Am metallic fuel sample

scientific reports

W) Cruck for updatas

3D isotope density measurements

by energy-resolved neutron

A. 5. Losko™ & 5. C. Vogel*

)
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Enabling technology: Compact event-mode

Imaging cameras

* Event-mode camera analyzes photon output of scintillator,
enables neutron/gamma discrimination

* Proposed ~2020, novel

technique e
* Improves spatial and temporal o Dhoton clsters
resolution

* Gamma rejection makes it ideal
tool to characterize radioactive
samples such as irradiated

fuels

single photons

« LANSCE team involved in peetground
developing this technique

Background

\\\\\\\\\\IIIIIIII//////

;I

* Some technique development
supported by NSUF IS grant

Transmission P

O\,
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“New perspectives for neutronimaging through advanced event-mode data acquisition™ LOSKO et. al. SCientific Reports (20271)
Los Alamos Neutron Science Center

“LumaCam: A Novel Class of Position-Sensitive Event Mode Particle Detectors using Scintillator Screens” Wolfertz et. al. Scientific Reports
(submitted)

Transmission [1]
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Deviation [1]
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https://www.nature.com/srep
https://www.nature.com/srep

J , . , , HIPPO
Event-mode camera in HIPPO: Combining neutron diffraction

with energy-resolved neutron imaging

e TPX3Cam/Event-mode camera first installed in HIPPO December 2022

* Improved version in FY24 with this grant, but only ~10 days of beam time for commissioning and
demonstration

* 10mm & HIPPO beam spot large enough for some imaging
= Scans for e.g. irradiated fuel also provides Bragg-edge data for spatially resolved lattice parameters (e.g.
O density in high burnup UO,)

* 1,200 He-3 tubes provide simultaneous diffraction data

 Counttimes forimaging ~50 times longer (one to several hours) than for diffraction (one to several minutes)
* Immediate access to HIPPO sample environments (furnaces, cryostats, sample changer robot etc.)

* While diffraction analysis is mature, energy-resolved neutron imaging requires analysis tools

ATEET = W " e VRN g 60° panels  39° panels I

Los Alamos Neutron Science Center /\‘ X(x)

7 ()
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Master Camera Installers Practicing their Craft
(also head-shots of my co-authors)

Tsviki Hirsh Alex Long Adrian Losko
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F HIPPO
Thermal Expansion of U-Mo alloy : - |
*U-Mo, U-Zr, and U-Nb researched at LANL for var. LANL missions

*Diffraction allows to study o ;
* phase diagrams/phase transformations, P T B T TS
o Orderlng processes 0 200 400 600 800 1000

Temperature [°C]

* lattice parameters

* Lattice parameters: density & thermal expansion as a function of
temperature

* Three compositions of U-Mo characterized between RT and 1000°C
* High neutron flux & ~20% of 4pi detector coverage — Room Temp

— 9200C

= one minute time resolution, 5C/min temperature ramp rate oee

— 1000C

e Lattice strains relative to lattice parameter measured at 1000°C e
= three alloys shows differences in thermal expansion behavior,

*Event-mode neutron imaging camera .
= transmission data simultaneously with diffraction data
= Doppler broadening of U-238 neutron absorption resonances could
enable sensor-less temperature measurements
= Depth of resonances of U-238 and U-235 would allow to map
enrichment levels (present samples were depleted uranium)

-0.008 |
-0.01 f

Lattice Strain []

-0.012
-0.014

—— 9p0C

~_
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Micro-structure aware cross-section of Be

* Microstructure affects cross-section of
materials in the thermal neutron energy
range

* Ability to measure BOTH microstructure
AND cross-section allows to rule out e.g.
texture as cause for discrepancies

 Added extinction to NCRYSTAL code that
can be plugged into MCNP calculations
for thermal cross-sections

* For neutron reflector applications, but
can be applied to cladding, structural
materials etc.

* Collaboration with European Spallation
Source, Lund, Sweden

* Paper under review with J. Appl. Cryst.

AR = W . WO e

Los Alamos Neutron Science Center
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Other relevant application examples

 Grain orientation mapping in large-grained reactor pressure vessel or primary
cooling loop pipe steel to inform acoustic inspection methods

* Cross-section of hydrazine above and below freezing point for satellite-based
neutrcen)detectors (diffraction provides evidence of freezing and integrity of
sample

e Cross-section and texture of HEU uranium fuel for NATRIUM

* Interest expressed to measure thermal cross-sections above and below ambient
conditions (e.g. solid-state moderator materials, fuels for space reactors)

* NSUF proposals that will benefit from this capability:

* RTE “Isotope density mapping using Energy Resolved Neutron Resonance Imaging of a
High Burnup UO2 Fuel Fragment “ (fuel from H.B. Robinson reactor, 23-4584, funded,
waiting for beam time)

* CINR on Fast Flux Test Facility irradiated steel (CINR 24-31447, funded)
* CINR “Post-Irradiation Examination (PIE) of BR2-Irradiated SiC-Based Accident-Tolerant

Fuel (ATF) Cladding Materials & Constituents Thereof (POSEIDON)” (25-34175,
submitted)

* CINR “Title: Effect of neutron irradiation on NF616 (Grade 92) at LWR and fast reactor
relevant temperatures “ (25-34154, submitted)

HIPPO

ANSGCE— 1% Los Alamos

Los Alamos Neutron Science Center < NATIONAL LABORATORY




Update on high burnup fuel characterization

23-4584, Pl Will Cureton, collaboration between ORNL, INL, LANL

Funded, but delayed because sample holder needed re-design and
2024 LANSCE run cycle was cancelled

Issues with previous sample holder for irradiated U-10Zr-1Pd (20-2958):
 Sample turned out to be fully oxidized (no alpha-U detected)

* Pathway for oxygen to reach sample could also provide pathway for
contamination to leave containment

 Sample holder made from aluminum contributed greatly to diffraction signal
(especially for 55% enriched sample)

* Heating not possible because spacers and adapter for robotic sample changer
were also made from aluminum

Improved sample holder:
 Sample sealed in vanadium can and in holder (ORNL design)
* Replacement of aluminum with vanadium will reduce diffraction signal
* One less screw for hot cell operators

* No more aluminum parts, sample can be heated, devised furnace adaptor
allowing remote handling

—> After room temperature characterization of HBU sample under existing RTE a
follow-up RTE will be submitted for high temperature structure changesin
irradiated fuel (up to 800C)

it
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Software Development & Publications

* Sofware: +I;L|_ I DE\S
» PLEIADES: Resonance analysis S g

. . . Python Libraries Extensions for [sotopic Analysis -.,|1 I
* Lead by LANL in collaboration with other " etaled Examinat D.mfmp?y resuls el
neutron sources, funded by NSUF _g Q \IH.I. J3oREQ TI.ITI ) |

* Contributed to several others such as
nBragg (Bragg-edge analysis,
Soreq/Israel) and NCrystal (thermal

Energy-Resolved Neutron Imaging and Diffraction -
. . . including Grain Orientation Mapping Using Event 9
cross-sections, Danish Technical SCIENTIFIC Camera Technology g
. . . . . o Tsviki YA“Hirsh.‘, Andrew F.'Il‘_ Leong’, Alexander M. Longl.qurian S. Losko’, Allexander <

U n Ive rS I ty) , M AU D (d I ff ra Ct I O n a n a lyS I S , ’g} Wolfertz’, Daniel J. Savage’, Tim T. Jager', John Rakovan®, and Sven C. Vogel

CIENTIFIC Imaging

° ° REP RTST ki Y. Hirsh', Alexander M. Long®, Adrian S. Losko’, Tim T. Jaeger', Alexander,
e Publications: &

PLEIADES: Python Libraries Extensions for Isotopic

e 2 Publications almost in print JSS A, “’,"‘?ﬂi“f":’?‘“&'ﬁ“°f§’?“'"t".,"{°i‘:'“%

e 1 Publication close to submission

Unversity of Trento, Italy) Fﬂm:?;a‘f;r;:t::,':’;:‘;:.i‘:;";;“az:‘:r::".;:;z;:m
S

m

The Journal of Open Source Software  Zhang?, and Yu.
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Conclusions

* Simultaneous characterization with diffraction and energy-resolved neutron imaging
(resonances, Bragg-edges, inelastic) is a powerful characterization tool

 Counttimes will be dominated by imaging if mapping desired, similar for global cross-section

* For cross-section measurements, knowledge about microstructure (texture, phase
composition etc.) is often very useful

* For non-ambient condition measurements, energy-resolved neutron imaging adds
information to e.g. spatial distribution of decomposition reaction in hydrides or as a
diagnostic for sensor-less bulk sample temperature measurements

Lattice Strain []

» Both atomic displacement parameters in diffraction analysis and Do SEler broadening of RN
resonances depend on thermal motion of atoms predictable b% _Ig T or MD calculations
=> Combination could be a powerful technique to benchmark DFT at non-ambient conditions

* Python-based data analy3|s[§>Epel|nes for both Bragg-edge and resonance fits using NCrystal
(nBragg) and SAMMY (PLEIA ), respectively, are very powerful

* Funding from NSUF for this effort is gratefully acknowledged!
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HIPPO

HIPPO workhorse sample environments:
Robotic sample change & ILL furnace

Imaging on HIPPO benefits from
existing sample environments

Beam pipes of furnace and cryostat
require larger distance of camera
from sample than for robotic
sample changer (exit pipes could
be modified)

L NTa sheet

dU cylinder

Large grained steel
Natural silver

ESS beryllium

A lot of the data presented
here collected in one shift!
(time was limited due to end c
of run cycle looming...)




Cd slit allows “spatially-resolved” diffraction o

=> Characterization in ~2mm slices

Caliber 7.62 mm additively manufactured steel cylinder was driven into the

wall at 235 m/s into an anvil in the Taylor Anvil Gas Gun Facility at LANL.
Microstructure as a function of distance from impact studied with HIPPO

Volume fraction Microstrain Microstrain /crystallite size

f d £ ph ’
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Los Alamos Neutron Science Center

S. Takajo et al., J. Powder Diffraction, 2018
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Camerain HIPPO —
A few observations

* Any polycrystalline camera components in the beam cause
background for the diffraction signal
=> need to get rid of aluminum in mirror and scintillator
backplate

* Any upset requiring reboot of the camera requires removal of
sample environments by crane, requiring in turn possible new
empty instrument runs etc.
=> need to be able to reboot camera remotely

* Need motion control to aligh camera with beam spot, move
along beam for robot and furnace/cryostat beam positions

« Camera operation is fully integrated with HIPPO experiment
automation, diffraction and ERNI data receive same run
number, runs are started and ended together, camera is
treated like a sample environment WRT experiment
automation

FENORN = W K. W

1% Los Alamos
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T. Hirsh et al., submitted to Nature Scientific Reports (2024 )"




lron powder

* Same iron powder used in 1998 for
first Rietveld fit of a Bragg-edge
pattern with BETMAnN

* All transmission data analysis by
Tsviki Hirsh using NCrystal, jupyter-
notebooks, and python

* Low background

* Resolution comparable with
adjacent FP5

* Resulting sample thickness of
20.8(3)mm compares well with the
~25mm thick container given that
powder is loosely packed
=> Physics model for Bragg-edge
analysis is reasonable

FAWARN = W . WM

Transmission

Residuals

0.30
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02 04
d-spacing [A]

30 minutes measurement - Iron powder

: 1.03

: 20.8(3) mm

: 3.67(13) A

: 3.06(7) A?

: 1.80(9)- 1072
:-1.76(15)- 1073

: 8.44(125)-1073
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data

2024, HIPPO, 9m
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amos Neutron Science Center

T. Hirsh et al., submitted to Nature Scientific Reports (2024)
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HIPPO

Ta foil for resonance

* Taresonances match up to ~300
eV with a 30 minute count time!!! 10-

* Background extremely low 05 - W |

=> penefit over FP5 due to 5 —
. . . . a ] X2 1.
incident collimation of HIPPO at £ °° d 21L1s00um
the cost of a <14 mm diameter & oa- e:: 238120181207
beam spot Data
_ . 0.2 - ---- Background
* Resulting sample thickness from — sammyfic
resonance analysis is within5%  5—— — 1 —
of micrometer-measured 2 004
sample thickness g 011
w001t e
ANSCE— Energy [ev] (%83 LOS Alamos

T. Hirsh et al., submitted to Nature Scientific Reports (2024)



Natural Silver Sample

* Mineral specimens are often too precious for destructive®
characterization by other techniques and benefit from neutron
characterization

* Neutron diffraction provides e.g. phase composition and
texture

* Natural silver specimen from the collection of the New
Mexico Bureau of Geology & Mineral Resources’ Mineral
Museum at the New Mexico Institute of Minino and

Technology was provided by New Mexico S
John Rak%%lfan P Y @)

* Goal was to characterize the texture of a wir
to compare with previously characterized sil

* Size of the sample 1s ~4cm, non-wire parts n
masking tape painted with Gd,O; paint, 10 n

* Diffraction data allows to.guantify texture (ln
orientation detected) and identify additiona

* Neutron absorption resonance data allows to
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