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Project Objective

Nuclear Energy

BDetermine thermal conductivity & diffusivity of U-Pu-Zr fuels irradiated to
various burnup levels using TREAT pulse shaping

mDevelop fuel thermal property models based on pre- and post-irradiation
microstructure analysis
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» Metal alloy fuels are historically used and studied in fast reactors, and U—
20Pu—10Zr is being studied by DOE programs

« Thermal conductivity data for irradiated fuels at different burnups are essential
for fuel performance and safety design
« Thermal conductivity estimation by Bauer and Holland in 1980s

Thermal conductivity were estimated between melted region at fuel center and
sodium coolant outside cladding based on cross-sectionimages

Significant conductivity reductionis probably due to increased fuel porosity
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Available Thermal Conductivity Data
Nuclear Energy for U-Pu-Zr Fuels at Low Burnups
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State of the Art Measurement Methods

Out-of-Pile, Irradiated Fuels
BHot-Cell basted LFA testing

e Radioactivity poses added
complexity
e Testing Is destructive (one burn-up

level) and only measures in axial
direction

In-Pile
BNeedle Probe & Transient Hotwire

e Instrumentation is difficultto achieve
and disturbs fuel structure
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Research Goal

Develop a thermal property measurement
method with two attributes:

1. Non-Destructive

e Preserve structure of interest
e Subsequenttesting

2. In-pile Nuclear Heating
e Eliminate the need for hot cell
e Utilize reactor condition

e Radial heat transport

1 mm

[Carmack, 2009]
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Thermal Wave Overview

2 temperature waves

propagating in response to
sinusoidal temperature
variation along the left
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Controlled Heat Generation in TREAT
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Idealized Thermal Wave Responsefor a
Simplified Fuel-Cladding-Heatsink System
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Temperature Heat-sink Overpower

Response Module (THOR)

Rodiet Retrieval Extension

Cladding Upper End Cap

Ferritic Piece
{fixed to upper end cap)

P Fuel Expansion LVDT

Capsule Sodium Bond

Fual Column .

p (fixed to capsuie)
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'ENERGY Measurement of Thermal Diffusivity -
Nuclear Energy Conductivity Using Thermal Wave

g(t) = Re(gACeiwt)'l‘gDC — T(T, t) = Re (Ti(r, (U)) + TDc(T, t)
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Uncertainty for Measurements
Based on a Single Test

Measurement performed only at the optimal frequency. As a result, only one parameter
among k and a of fuel is unknown, and the other is precisely known.

_S(xp) . _S(xy)
u(en o) = 5o S ulkx) = g ux)
0.2Hz 0.2Hz 0.34Hz 0.2Hz
Parameter un 5mm Ti 10mm Ni200 10mm Na omm HT9
K, oy K, ol K, oy K, o

k of cladding 5% 1.8% -0.8% 0.4% -0.2% 1.3% -0.5% 1.2% -0.6%

kof heatsink 5% -6.9% 3.3% -5.6% 2.5% -6.4% 2.7% -6.4% 3.0%

o ofcladding 5% -45% 2.2% -3.6% 1.7% -5.2% 2.2% -4.1% 1.9%

o of heatsink 5% 50 -2.4% -1.1% 0.5% 5.2% -2.2% -0.1% 0.0%

o of fuel 1% 1.0% -0.5% -3.3% 1.5% 1.0% -0.4% -0.6% 0.3%

o of cladding 1% 04% -0.2% -0.5% 0.2% 0.3% -0.1% 0.0% 0.0%

dofheatsink 1% -14% 0.7% 0.5% -0.2% -1.9% 0.8% 0.5% -0.3%

Probe 1% 33% -1.6% 59% -27% 48% 2.0% 41% -2.0%
Position

Phase 0.5° -6.8% 3.3% -6.7% 3.1% -6.7% 2.7% -6.7% 3.2%

Total Uncertainty 12.5% 6.0% 11.7% 5.3% 13.1% 5.5% 11.0% 5.2%
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Sample Selection and Preparation

BOver 13,000 Mark-I1I/1IA/1V fuel rods (U-10Zr) and 600 U-Pu-Zr fuel rods
were cast and irradiated to burnups ranging from 10% (U-Zr) to 20% (U-
Pu-Zr)

MOnly a tiny portion of fuels has been subjected to post-irradiation
examination. Even smaller fraction has been subjected to detailed
characterization with state-of-the-art tools available now

BFour TREAT experiments using U-19Pu-10Zr sample of burnups at 1.9,
4.9, 11.2 and 19.3 at% are proposed considering the limitation of NSUF
TREAT scheduling and project scope.

Composition Burnup (at %)
U-19Pu-10Zr 1.9
U-19Pu-10Zr 4.9
U-19Pu-10Zr 11.2

U-19Pu-10Zr 19.3
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Ongoing Work at the University of
Pittsburgh:

Nuclear Energy

1. Develop and demonstrate the proposed measurement method via
laboratory experimentation

2. Quantify the capabilities, limits, and errors associated with the
developed measurement method

3. Investigate the applicability of the method on degraded samples
to prove the relevance for nuclear fuel property tracking

Present: Refined proof of
conceptand expanded
study

Stage 1: Investigatory
rectangular coordinate

system experiment

Stage 2: Proof of concept
cylindrical coordinate
system experiment

14
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Nuclear Energy System

h-BN powder layer

Heating
element

Vessel TS O 1

Graphite

Heat sink

Thermocouple
Cladding

Fuel

gn(sin(wt))

M A plane, layered system was used to in lab testing

M Electrical heating used to simulate reactor power
shaping

] ] thermal contact resistance
B Temperature is measured by an IR video camera

Conductivity lefuswlty Densﬂy Heat capacity

64.2e-6 1820 710

-m_ 22643 12.4450:6 2280 798
Tool Steel O1 64 17.78 7810 461
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Experimental Design: Thickness of

Fuel Layer
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Stage 1 (Rectangular): Thermal Contact
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Resistance

Phase lag between fuel layer and heat sink phase lag between fuel layer and heat sink at f = 0.2 Hz

-20 -40
simulating result (without thermal contact resistance) ’ : — < experiment data
30l § —&— experiment data -45 simulation result | 7
@ R 50 -
g 40 s
o
3 L .551
g -50 — s @
o B s -60
@© -60
i -65
70 F -70 |
-80 -75
0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5
x(m) %103 x/m %1073

Thermal contact resistance poses a technical challenge in lab
experiments. It became another unknown to be determined

It will not be an issue for reactor experiments because of
sodium bonding between fuel and cladding
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Stage 2 (Cylindrical): Heating Mechanism

BNear volumetric heating mechanism
MStrong heating response in ferritic stainless steels
e Negligible to no response in other materials

SS430 response vs surroundings: Idealized Specimen:
a=020 ) = Incident
133.1°CC], ¥
Sink
\
Cladding/Thermal
contact
Sample \
.Mxﬂx>'(:133.1°\<;_w&’:“’j 02:14 MAX:129.6°C MIN:1.4°C 02:15
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Stage 2 (Cylindrical): Experimental Setup

Specimen Assembly:

Center-
BN-AIN || Line TC

Cladding
TC

Galinstan

SS-Fuel Layer

. || Sink TC

Experimental Setup:
Function Gen | [cRIO DAQ] Desktop

-|4

ZV'S Driver Sample
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Stage 2 (Cylindrical): Testing Procedure

MHeat specimen to quasi steady state
MTest:
e N =24 Cycles

e Frequencysweep: 20 logarithmically spaced
frequencies across [0.05-0.3 Hz]

MPost-process consists of FFT
analysis to calculate phase delay
between the sink temperature wave
and the power

BUse nonlinear least-squares

regression to back-out the predicted

thermal properties of the fuel layer

Amplitude

Signals with Phase Matched Projection
T T :
T ‘emperatur
Temperatur (Shft d)

i

Signal 2 lags behind Slgnal 1
by ~97.8 degrees

280 300 320 340 360
Time [s]

| | | | | | L .
100 150 200 250 300 350 400 450
Time [s]
x2
T

L 4 | | | | | |
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency [Hz]
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Stage 2 (Cylindrical): Wave Components
at the Probe Point
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Stage 2 (Cylindrical): Results &
Takeaways (Phase curve & Predictions)

Thermal diffusivity sensitivity of
the fuel layer is high

Frequency sweeps are preferred
to spatial sweeps

Temp bias is high for fine gauge
TC. Optical preferred.

Heating method likely needs
altered due to non-uniformity
(skin depth)

Phase lag

00t Num Exp |
* Experimental
----- Best fit
*
-100 ¢
110 ,
¥
120 ¢
130
0.1
flHz1
B Actual
Actual — Predicted 55—
aaladding[%] 8.66e-6 — —
kcladding {%} 16.5 - —
G‘h,cal,sz'nk[%] 2.87e-h — —
khcatsink [%} 75.8 - —
T probe | 1M01M) 5.60 5.57 0.947
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Thermal Sensitivities: Length Sensitivities:

10

20
kfuel

] ”fuel 0 1
K a ding %

1 |—e—x

==
o
S

cladding

Sensitivity
Sensitivity

'
w
o

40+

0.1 0.15 02 025

f[Hz]
Té(?}&)) — Qﬂ—(}:l“g(“‘)
_ ola+ Az) — ¢(x)
Sle) = Ax/x | T
@ = arctan a =——

Re(T;) PCp
BRoughly 2x as sensitive to a than to k
e i cancels in leading coefficient, direct dependence in Green’s function
MStrong Sensitivity to layer and probe radial lengths
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On-Going & Future Experimentation

Future Experimentation will be twofold:
1. Enhancement of experimental heating

e Transition to Gleeble 3500 thermal-
mechanical physical simulation system

o Improved environmental and heating control

2. Exploratory external heating
adaptation

e Can we measure properties of samples
using an outer conductive layer to drive
heating

o Open the door for supplementary degradation-based
experimentation

GLEEBI£ ] "“'"

=k

[Dynamic systems, Inc]
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On-Going Experimentation: Gleeble

Nuclear Energy based Thermal Wave testing

MTest 2 orders of a

e 107 (—6) [m"2/s]
EHeating: Initial fuel wall temperature &
power probing of an un-sheathed

o Utilize high speed joule specimen at 1Hz using welded TC:

heating
ETemperature Measurement: | | | | | _0°
. L [ emperature
o Optical Pyrometer o oo gt
245 05 |- Heat Power -
DA > 1s
T ? 245 H &
— 24495 U
. O o
Optical Pyrometer S ool .5 %
— =
Heatsink — 244831 (S
Cladding — 2448 a =
24475
2447 -
: ' ! ' ! — 3.5
82 84 86 88 90 92

Time [s]

~

Gleeble Jaws Joule Heating
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Future Work: Degradation Study

m\We can apply this method
to a system with the source
in external layer.

Conductive Cladding Sleeve

BConductive sleeve to drive
heating in a ceramic
specimen

Minitial sensitivity studies
show a sufficient degree of Heatsink
sensitivity

Ceramic Specimen
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Highlights — Overall

M Recent Accomplishments:
e Completed study of the magnetic heating-based cylindrical system

e The refined Gleeble 3500-based cylindrical experiment has been
designed and preliminary tests are underway

M [ssues (schedule/cost/technical):

e Delays in Pitt Gleeble installation has resulted in needing to use
neighboring university’s system (Carnegie Mellon)

M Look Ahead (30/60/90 days):

e Complete modelling work (Monte-Carlo & Nondimensionalization
studies) for publication

e Begin experimental investigation of external heat source measurements
& degradation studies
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MARCH-SETH-THOR

B TREAT separate Effect
Test Holder (SETH)

B SETH holder with a
heat sink (THOR)

B Sample preheating to
desired temperature

M Power shaping to
simulate harmonic
heating for no more
than 30 seconds

sion Fuel

Space Propul-

il

Rodlet

Instrument

Compression Quick
Seals 4— Connect
2X Secondary Can Fitting

Gas Purge Quick

Connect Fittings *— 1/4Turn

Valve

Flange
Hanger Rod
Screw

Hanger
Rod

Capsule
Hanger Rod
Screw

Capsule

Threaded
Alignment
Hole

MTR-type
Miniplate

Expansion

Graphite Gap

Reflector
Block

Spring
Foot



