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NSUF PIE Institutions in the USA Total 21 institutions
Total 19 PIE institutions

i
‘ Il
a achuse

TCh !!l

PNNL —i
\‘..\L,
" ., Idoho Nafional Laborat
~, 10ano INational Lal oruory_.__-__-
Mi

Centrfor Adwanced
Eoeryy Studes

.‘ Bnnmmmnzu
wes‘mg“u\,\se NATIOMNAL LABORATORY

g PennState

© Berkeley

s Los Alamos

AAAAAAAAAAAAAAAAAA

-
Nuclear Science
4 ) nsur User Facilities
i



Post-Irradiation Examination (PIE)

* Objective

— Select new or improve nuclear materials

— Characterize and understand in-core behavior of fuel and materials
— Support the qualification of new research reactor materials

— Interpretate reactor material safety tests

* Techniques

— Non-destructive
— Destructive
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Non-destructive PIE methods
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Non-Destructive PIE Methods
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Non-Destructive PIE Methods
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Neutron Radiography
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Thermophysical
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Gamma Spectrometry

Gamma spectrum taken at OSU-NRL :
for 6.065 grams (1.21 mg of U-235) of salt i Heating Chamber &=
irradiated at 3.96 x 106 nfcm? [ ,ﬂgggdgtor .
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10-days post-irradiation decay

Fission products spectrum of fuel salt [1.3 mg U-235] Fuel Salt Processing and Gamma Counting Facility

« The gamma counting measured a full gamma spectrum of shorted lived fission
products, including those gaseous species.

» The first group who has irradiated the fuel salt (depleted U-235)

Courtesy of Raymond Cao
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Neutron Diffraction
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X-ray Diffraction

« XRD can reveal chemical composition, lattice structure and stresses in samples.
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XRD patterns of U;Si, before oxidation and
after oxidation showing the formation of U30s. Westinghouse
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X-ray Diffraction: Beamline
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* In situ dynamic measurements

* Non-destructive 3D
characterization

Near-field 4  Multiplelength scalesin one I T
Lienert et al (2011 Lsa~10mm Far-field experiment BROCKARGEN

Poulsen (2012) Lsa~1m
NATIONAL LABORATORY

Near-field HEDM (nf-HEDM): Far-field HEDM (ff-HDEM):

» Reconstructs grain morphology and crystallographic » Reconstructs centroids, crystallographic orientations, and
orientation voxel by voxel (1-2 um resolution). elastic strain tensors domain by domain (10 pum resolution).
Detector images as sample rotates: EBSD-like reconstruction Detector images as sample rotates: _
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Positron Annihilation
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Destructive PIE characterization
— Physical properties
— Surface characterization
— Microstructure
- Mechanical properties

-
Nuclear Science
15 I-lsur User Facilties
[



Destructive PIE Characterization Capabilities
Physical

/ < Hot cell
properties

In situ testing Destructive
/ Mechanical Surface
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Hot Cell Facilities
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Massachusetts

Institute of
Technology
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Physical Properties Measurement

« Thermal stability:

— Thermogravimetric analysis (TGA)
* Thermal expansion:

— Dilatometer

 Thermal conductivity, thermal diffusivity,
specific heat capacity:

— Laser flash analyzer (LFA)

— Differential scanning calorimeter (DSC)

Simultaneous
thermal analyzer,
dilatometer, LFA,
DSC inside of the
fresh fuels
glovebox (FFG)
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Surface Characterization
At Interaction of Materials with Particles and Components Testing (IMPACT)

* In-situ characterization to study dynamic heterogeneous
surfaces at the nano-scale exposed to varied
environments that modify surface and interface
properties

+ Characterization of the evolution of elemental, chemical,
and thermodynamic states of ultra-thin film surface and
Interfaces using complementary surface-sensitive
characterization techniques

— Thin film & multilayer (precise four-pockete-beam evaporator)

— lon beam sputter cleaning

- lonirradiation (300eV -2 keV @ LN, - 1200°C)

— X-ray Photoelectron Spectroscopy (XPS: surface chemistry)

— Auger Electron Spectroscopy (AUGER: properties of elements and compounds)

- EUV (13.5 nm) Photoelectron Spectroscopy (EUPS: electrondensity)
PURDUE — Ultraviolet Photoelectron Spectroscopy (UPS: composition)
SEEEEEEET T — Low-Energy lon Scattering Spectroscopy (LEISS: atomic composition)

. Q . — uclear Science
Courtesy of Ahmed Hassanein 19 L_/I‘lSUrUse'rFac%mes



Microstructure — Morphology

+ Optical metallography
 Scanning electron microscopy (SEM)/BSE/EBSD/FIB
« Transmission electron microscopy (TEM)

Spectra 300 STEM
STEM resolution 50 pm

—— 200 nm

Berkeley C}ﬂb ldaho National Laboratory

UNIVERSITY OF CALIFORNIA

Courtesy of Yagiao Wu, Peter Hosemann, Stuart Maloy 29 D1SUrH§:P€£§%‘£’Q°‘*



Microstructure — Composition Analysis

- Atom probe tomography (APT)

* Electron Probe MicroAnalysis (EPMA)

- Energy Dispersive Spectroscopy (EDS)

« Electron Energy Loss Spectroscopy (EELS)

(b?ombination of TEM+APT 5
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6 108 P d+M‘a‘s‘;g»lo-6harge‘-nsiate Ratio (Da)
STEM HAADF image of an irradiated TRISO APT sample tip (a), corresponding reconstructed three-
dimensional APT maps showing a Ag-Pd-Ru-U - rich phase in a volume size of 32 nm x 31 nm x 12 nm
(b) and mass spectrum showing detected isotopes of Ag, Pd, Ru and U (c).

Center for Advanced
Energy Studies

Courtesy of Yagiao Wu, Yong Yang 21 S/l‘lSUr Usr Fcifies.



Mechanical Testing

« Hardness/ Bend test/ Tensile/ Creep/ Fatigue/ Compact tension/ Charpy impact (toughness)
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Content

Accelerated testing
— In situ irradiation + microstructure /or mechanical /or corrosion testing
- In situ mechanical testing + microstructure characterization
— In situ corrosion + stress
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Accelerated Testing

 Testing under conditions iIn
excess of normal service
parameters

» Testing under multiple factors
at once

24
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Accelerated testing
— In situ irradiation + microstructure /or mechanical /or corrosion testing
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In Situ lon Irradiation + Microstructure Characterization
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In Situ lon Irradiation + Mechanical Testing in MIBL
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« Understand performance of
structural alloys for molten salt
reactors under simultaneous
corrosion and irradiation

Vacuum port
- Heated Ni capsule holds molten _ ‘
FLINaK behind thin foil target | SR — ;
roton Molten Sal
beam e : \Nickel capsule
1
o Aperture . dl[
(ﬂ]" locatior}ll ’
WISCONSIN

Thermocouples

Cole Evered, et al. NEUP Project21-24195: Enhancing Yellowjacket for Modeling the impact of Radiation and Stress on the Corrosion of
Molten-Salt-Facing Structural Components, Federal Grant/Cooperative Agreement Number: DE-NE0009163

Courtesy of Cole Evered, Adrien Couet 28 E/n SLY = e scerc
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In Situ Proton Irradiation + Corrosion in MIBL

: Radiolysis products
Beamline in water
Bl Vacuum
- 103torr
Sample
Mount
Proton Beam - Corrosion

Cell
Body

1900 psi

(13 MPa) Displacement
damage in solid

UNIVERSITY OF
MICHIGAN

Courtesy of Peng Wang 29 S/I-lSUr Usr Fcios
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Accelerated testing

- In situ mechanical testing + microstructure characterization
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In situ Mechanical Testing + Microstructure Characterization
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Accelerated testing

— |n situ corrosion + stress
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In situ Stress + Corrosion: IASCC

- Stress corrosion testing on irradiated material at Materials in High Temperature Extreme
Environments (MIHTEE) Lab

UNIVERSITY OF
MICHIGAN

Courtesy of Peng Wang, Stephen Raiman 33 LEI"SUFHSSPE&%%‘%@“‘*
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Summary
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Summary

* NSUF has comprehensive PIE capabilities
— Non-destructive capabilities
— Destructive characterization methods
— Accelerated testing capabilities for various reactors environments

* NSUF provides all these world-class capabilities to support cutting-edge
research

No other user facility in the United States offers as wide a variety of PIE
capabilities as are available through the NSUF.
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