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Applying machine learning can increase the quality
omd consw’rency of NSUF user data
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« Only inrare instances are users likely o quantity a complex image the

same
ML methods like object detection will provide the same answer on the

same image everytime
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Example of our best Mask R-CNN detection model
for cavities in irradiated materials

Human Expert Mask R-CNN

Jacobs, R., Patki, P., Lynch, M.J. et al. Materials swelling revealed through automated semantic
segmentation of cavities in electron microscopy images. Sci Rep 13, 5178 (2023). NUCLEAR ENGINEERING &
ps://doi.org/10. S -023- -
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ML-based object detection using convolutional
neural networks (CNNs) enable human-like
guanftification in less than a second
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Theliascope™ systems are now at several partner

facilities
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Datasets Organizations Projects About

Welcome to NRDS

The Nuclear Research Data Search (NRDS) site is a public-facing, long-term data
storage solution and science data gateway featuring integrated compute
resources such as artificial intelligence enabled hardware, and access to graphics
processing units (GPUs). Operated out of the US Department of Energy Office of
Nuclear Energy's Nuclear Science User Facilities (NSUF) program, NRDS takes
publicly funded data from NSUF research and makes it accessible to the public
without requiring a paywall or account and ensure all data meets the pFAIRe
criteria.

Advanced Test Reactor

Search data

E.g. nuclear energy

Current Al Analysis Features

Super Resolution - Low resolution to high resolution photos

Activity Detection - Locating temporal activities within a video

Dislocation Segmentation - Segment dislocation loop and line defects in an image
Dislocation Lines - Overlay dislocation lines on an image



Application of image super-resolution (ISR) like in NRDS
can improve machine learning object detection

Training_(using the original training dataset and generated super-resolution dataset, respectively)
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Testing (using_the original testing dataset, and generated super-resolution dataset, respectively)
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Original Image
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J. Olamofe, L. Qian, K.G.Field, J. IEEE Access., Under Revision, 2025



Application of image super-resolution (ISR) like in NRDS
can improve machine learning object detection

Model O-M Model SR-M

Total Predictions 4775 3768
Total ground-truth 4259 4259
True Positives 2607 2475
False Positives 2168 1293
False Negatives 1652 1784
Precision 0.5459 0.6568
Recall 0.6121 0.5811
F1

*** Model O-M: YOLOvV8 model trained
on original dataset and tested on
original dataset for all modalities

*** Model SR-M: YOLOvV8 model
trained on super-resolution dataset
and tested on super-resolution
dataset for all modalities

Super-Resolution (ISR) enhances precision (+20.5%) by improving image clarity, making
detections more reliable
A minor trade-off occurs with recall (-5.1%), meaning some true cavities might be overlooked.
F1-score (+6.8%) confirms an overall performance boost, making ISR a valuable

enhancement for cavity detection

False positives are drastically reduced (-40.3%), proving that ISR refines
detection accuracy

J. Olamofe, L. Qian, K.G.Field, J. IEEE Access., Under Revision, 2025
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Development of DSCNNs and SORT-based tracking

has been under development at OR
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IVEM has developed machine learning methods that enable cavity
tracking and extraction of cavity growth rates

Growth (nm/s)
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IVEM has developed machine learning methods that enable cavity
tracking and extraction of cavity growth rates

IVEM-Tandem Facility at Argonne National Laboratory

Automatic Segmentation of in-situ video by computer vision
Nickel under in-situ 1 MeV Kr ion irradiation from 0.7 dpa to 1.9 dpa
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evelopment of DSCNNs and SORT-based fracking
as been under development at ORNL
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Ofther users of MITEM are developing their own frameworks
built on Convolutional Neural Networks and SORT algorithms
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Theliascope™ systems are now at several partner
facilities
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We have deployed a Theiascope™

to enable real-fime ML

quantification of in-situ irradiations ﬂ
Acquisition PC DOTO
- ’ Inference

Quonhflcchon

Time-resolved
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*C.R. Field & K.G. Field, U.S. Patent No. 12,231,802, Feb. 2025
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In-situ TEM irradiation of an FeCrAl alloy
in MIBL-(MC)?
Results courtesy of K. Sun and H. Li (UM)
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Schematic of a real-time ML cluster
computing deployment architecture:
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Single
Interface
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The new architecture enables a fully scalable
ad-hoc heterogenous cluster for real-time ML-enable microscopy

4 GPU-enabled edge-computing et 1 Near-edge workstation with 4
devices with infra-node data N GPUs and inter-GPU data
dispatching R dispatching

bid ce il Nre'e
Mask R CNN UWis
L BT VEL .. VI

ML Model Feature Identical Response! TT
FPS Count -




The Thelascope-M™ is currently available to users at
ldaho National Laboratory after successtul install at MFC
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Can you run your algorithms on the
Theliascope™ at partner tacilities?
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TRACS+SAHI with the
Thelascope™ facilitates
dynamic quantification and
drift correction during in-situ
TEM investigations at MIBL

316L implanted with 100 appm He and
onneqled at 500°C for 1 hr

Original Video

Drift Corrected Video

Defect Dynamics

Tracking Video

Defect Dynamics (Seg)
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TRACS + SAHI
provided high
temporal and
spatial fidelity on
cavity evolution

« Cavities under
annealing in 316L did
not migrate — only
‘movement’ was
preferential
directional growth

« Cavities nucleated
and grew with limit
additional nucleation
after initial growth
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Post-acquisition ML quantification and redl-time ML microscopy is now

available to NSUF users through NRDS, the user community, and through the
Theiascope™ systems existing at NSUF partner facilifies
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