

July 2025

Colby Jensen

National Technical Lead for Transient Testing

INL/MIS-25-85889

Why Transient Test Nuclear Fuels & Materials?

- Transient testing is like car crash testing for nuclear fuels
- Licensing a fuel system requires (see NUREG-0800):
 - identification of all degradation mechanisms and failure modes
 - definition of **failure thresholds** corresponding to each degradation mechanism
 - applies to normal operations, anticipated operational occurrences and design basis accidents
- Many operational limits are dependent on degradation and failure thresholds
- Enables economic reactor operations via improved fuel design and performance understanding

TREAT Design & Experimental Approach

- The Transient Reactor Test Facility (TREAT) operated from 1959-1994 and resumed operations 2017 to support fuel safety testing and other transient science
- Zircaloy-clad graphite/fuel blocks comprise core, cooled by air blowers
 - Virtually any power history possible within 2500 MJ max core transient energy
 - No reactor pressure vessel/containment, facilitates access for in-core instrumentation
 - 4 slots view core center, 2 in use for fuel motion monitoring system & neutron radiography

- Reactor provides brief (and typically extreme, up to 10¹⁷ n·cm²·s⁻¹) shaped neutron flux histories to test specimens
- Experiment vehicle does everything else
 - Safety containment, specimen environment, and instrumentation
- Diversity of TREAT's experiment history and foreseen community science needs and unique capability
 - Emphasized need for modern and multipurpose experimental tools

TREAT Experimental Approach

- Typical residence time in the TREAT core for a given experiment is a few days
 - Of which only a few milliseconds to minutes is the transient
 - Even with multiple transients on the same specimen, fluence is extremely low (dpa is effectively zero)
- TREAT is best suited for testing fuels, and materials that could interact with fuels (e.g. cladding, ducts), under extreme conditions for nuclear heated safety research
 - If significant structural burnup or material fluence is needed before transient testing, its better accomplished in another reactor first (e.g. ATR, HFIR)

Figures from: Bess et al., Ann. Nucl. Energy 124 (2019) 270

Reactor Power Control

- TREAT is a transient reactor, not only a pulse reactor "windowed" power histories
- Graphite heat sink, nimble control rod system → flexible power maneuvers
- Rod control system can accept feedback from experiment instrumentation

TREAT subpile room

Complex Shaped Transient and so on...

Transient Testing Testbeds and Infrastructure

 TREAT programs fall within 5 product lines, each of which is supported by its own test bed infrastructure

- Each testbed naturally divides in two size scales also distinguished by passive and active cooling
- Most R&D plans include tests from both size scales

"Capsule-scale"
More affordable
static environment
devices

"Loop-scale"
Devices with active thermal-hydraulic manipulation

IDAHO NATIONAL LABORAT

TREAT Experimental Testbeds

Reactor <u>and</u> hot cell facility integration

In-Situ Instrumentation

- Extensive in-situ measurements are routine in TREAT
 - Unparalleled core access
- Desired data should be important initial consideration
 - Wide array of options available today
 - Development of custom approaches is expected and welcome
- Laboratories have dedicated facilities and expertise for designing, fabricating, qualifying, and interpreting advanced instrumentation

In-situ data using advanced instrumentation

Out-of-Pile Characterization

In-Pile Characterization

Non-Traditional Applications of the TREAT Facility

(Beyond Transient Testing Nuclear Fuels)

- Fission effects on material properties
- Nuclear materials under extreme conditions (very high temperature properties and behaviors)
- Dynamic multiphysics instrumentation testing and model benchmarking
- System-scale core component testbed with nuclear heating
 - Non-safety category automatic reactor control system

Reactor Core Component System Testbed

TREAT User's Guide

- <u>Published reference</u> including facility overview, experimental capabilities
- Experiment information contact: <u>colby.jensen@inl.gov</u>, Program Technical Lead <u>nicolas.woolstenhulme@inl.gov</u> Experiment capability lead <u>todd.pavey@inl.gov</u>, Program Manager

