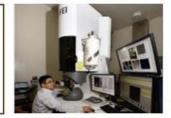


Neutron Reactors

12 reactor facilities at national laboratories and universities including the Advanced Test Reactor at INL


Gamma & Ion Irradiation

7 gamma irradiation facilities and 7 ion beam facilities at national laboratories and universities

Post-Irradiation Examination

Multiple hot cell and broad post-irradiation examination facilities including advanced characterization methods

Beamlines

Synchrotron and neutron beamlines for nuclear fuel and materials studies

Computational Resources

Scientific high-performance computing capabilities for advanced modeling and simulation at INL

NSUF offers the best capabilities across the nation

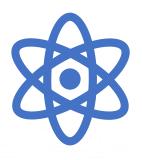
Cutting-Edge Resources:

Access to infrastructure and associated capabilities across 21 partner sites

Open access: Available to industry, academia, and national labs for non-proprietary R&D

Education and training:

Workshops, webinars, and handson skill development


Impact: Increase understanding to drive innovation across nuclear energy technologies

NSUF Objective

Offer an avenue for researchers to perform irradiation effects studies on nuclear fuels and materials

Access to NSUF capabilities is granted through competitive proposal processes:

- 1. Rapid Turnaround Experiments (RTEs)
- 2. Consolidated Innovative Nuclear Research (CINR) Notice of Funding Opportunity (NOFO) Announcement

NSUF RTE Overview

- Rapid Turnaround Experiments (RTEs) offer researchers the opportunity to perform irradiation effects studies of *limited* scope on a *small* number of samples.
- Completion of RTE projects is expected within 9 months of award.
- RTE solicitations typically run on a 4-month cycle from the opening of the call to announcement of awards. Calls are typically opened 3 times per year.
- https://nsuf.inl.gov/Page/rte

NSUF Super RTE Overview

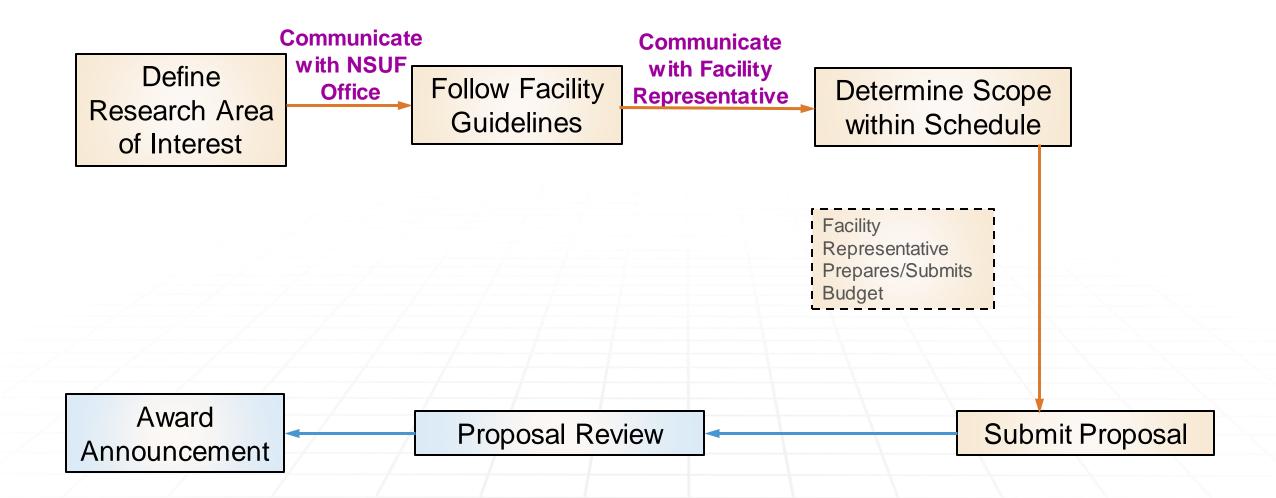
- Super Rapid Turnaround Experiments (RTEs) offer researchers the opportunity to perform irradiation effects studies of *limited* scope on nuclear fuels and materials of interest utilizing NSUF facilities.
- Completion of RTE projects is expected within 12 months of award.
- Super RTE solicitations typically solicited and are awarded annually.
- https://nsuf.inl.gov/Page/super_rte

FY 2025 RTE Calls

- 1st RTE Call
 - October ~June
- 2ND RTE Call
 - June ~ October

RTE Rules Highlights

- A PI may only submit one proposal per call
- A PI may have only two active RTE projects at any given time
- Universities, industries, national laboratories are eligible
- Content cannot duplicate other funded work
- Produced data will lead to scientific or engineering outcomes that are suitable for publication and will be attributed to the NSUF
- Studies focused on irradiated materials
- Three partner institutions may be requested
 - Sample preparation/shipping
 - Irradiation
 - PIE
- Completion report summarizing work completed and data obtained is required


Facility Guidelines for RTE Experiments

- Requests for NSUF facilities should remain within Facility Guidelines to ensure appropriate scope and budget.
 - Facility Guidelines for RTE Experiments https://nsuf.inl.gov/Page/rte
 - Facility Guidelines for SuperRTE Experiments https://nsuf.inl.gov/Page/super_rte

Institution	Facility	Irradiated Sample Preparation	Irradiation	PIE	Beamline	Allowed Time
Argonne National Laboratory Proposals that request irradiation and PIE at IVEM or APS should assume approximately one week of irradiation access and one week of PIE access to remain within the suggested guidelines.	Activated Materials Laboratory at the Advanced Photon Source	Yes		Yes	X-ray	72 hours
	Intermediate Voltage Electron Microscopy - Tandem Facility		lon	Yes		80 hours
	Irradiated Material Laboratory	Yes		Yes		80 hours
Brookhaven National Laboratory	NSLS II X-ray Powder Diffraction (XPD) Beamline				X-ray	24 hours
Center for Advanced Energy Studies	Microscopy and Characterization Suite	Yes		Yes		120 hours
Idaho National Laboratory	Analytical Laboratory			Yes		80 hours
	Electron Microscopy Laboratory*	Yes		Yes		80 hours
	*Restricted access facility: U.S. citizenship required for on-site access.					

Summary of RTE Proposal Preparation and Review

Tips for Success

Plan ahead and start application early

Work with facility representative(s) *before* submitting proposal

Ensure sample readiness

Request samples from the NSUF Nuclear Fuels and Materials Library when possible

Read RTE or SuperRTE Rules for Proposa Submission (https://nsuf.inl.gov/Page/rte or https://nsuf.inl.gov/Page/super_rte)

Seek feedback

RTE FY 2025 2nd Call Schedule

Proposal Submittal & Review Schedule					
Solicitation period opens	6/18/2025				
Proposal due date	7/16/2025 4:00 p.m. MDT				
Selection review	TBD				
Proposals awarded	TBD				

NSUF CINR Overview

- In close coordination with the Nuclear Energy
 University Program, Nuclear Science User
 Facilities (NSUF) seeks proposals that will utilize
 NSUF irradiation, post-irradiation examination and
 beamline capabilities through the Consolidated
 Innovative Nuclear Research (CINR) Notice of
 Funding Opportunity (NOFO) formerly called the
 Funding Opportunity Announcement (FOA).
- Through the NSUF CINR topic areas, NSUF provides no-cost access to world class capabilities to facilitate the advancement of nuclear science and technology. In addition to access to state-ofthe-art facilities, NSUF provides technical assistance including the design and analysis of reactor experiments.

FY 2025 CINR NSUF Topic Areas

NSUF-1: **NSUF Access with R&D**

- U.S. University-led
- R&D support is only permitted for tasks associated with the execution of the requested NSUF capabilities
- Up to \$1,000,000 per award

NSUF-2: **NSUF Access Only**

- U.S. University-, National Laboratory-, or Industry-led
- This topic does NOT provide R&D support
- Access value determined by NSUF office

Proposals with NSUF access can include:

- · Ion, neutron, and gamma irradiation
- X-ray synchrotron beam or neutron beam interrogation
- Post-irradiation examination
- Advanced materials characterization
- High-performance computing

How to find RTE and CINR information at NSUF website

- Guidance:
 - https://nsuf.inl.gov/Page/cinr
 - https://nsuf.inl.gov/Page/rte
 - https://nsuf.inl.gov/Page/super_rte
- Previously awarded projects: <u>https://nsuf.inl.gov/Home/Projects</u>
- More information

Fiscal Year 2025 CINR FOA

Each year, the NSUF seeks proposals that will utilize NSUF irradiation, post irradiation examination, and beamline capabilities through the <u>Consolidated Innovative Nuclear Research (CINR) Funding Opportunity Announcement (FOA)</u>. Through the NSUF CINR topic areas, NSUF provides no cost access to world class capabilities to facilitate the advancement of nuclear science and technology.

In addition to access to state of the art facilities, the NSUF provides technical assistance including the design and analysis of reactor experiments. NSUF Technical Leads can be found on the Contacts page.

Application information is available in Part IV in the FY25 CINR FOA

FY 2025 CINR FOA

Submit CINR Application

Important Dates

All deadlines are at 5 p.m. ET

Letter of Intent	June 5, 2024	
R&D/NSUF Pre-Applications	June 26, 2024	
NSUF Pre-Application Statement of Work	August 1, 2024	
NSUF Full Application Statement of Work	October 30, 2024	
Full R&D/NSUF and IRP Applications	November 13, 2024	

Questions?

