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Objective

Assess the viability of using alloys manufactured by powder 

metallurgy with hot isostatic pressing (PM-HIP) for nuclear 

reactor structural components. 

Understand irradiation effects on PM-HIP alloys through a 

systematic neutron irradiation campaign and post-irradiation 

microstructural and mechanical assessments. 
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PM-HIP Positioning Compared to Other 
Fabrication Methods
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Overview of PM-HIP Process
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Benefits of PM-HIP
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Poor quality castings Voids/porosity in 

castings

Ferrite stringers in forged 

stainless steel plate

Grain texture (Alloy 690)

Solute & impurity 

pickup; grain 

boundary 

segregation

Components need further 

machining and welding

Precise chemistry control & solid-state processing 

(i.e. no melting-and-resolidification, which promotes 

solute segregation and second phase formation)

High powder 

compaction & 

densification

Easier to inspect, 

fewer quality 

issues

Isostatic pressure 

creates equiaxed, 

homogeneous grains 

(and hence improves 

mechanical properties)

Components produced 

near net shape



NSUF Irradiation Campaign 15-8242
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Alloy Process
Target 

Dose [dpa]

Target Temp 

[ºC]

Micro-

structure
Tensile

SA508 PM-HIP, Forged
1 300 ✓ ✓

1 400 ✓ ✓

Grade 91 PM-HIP, Cast
1 400 ✓ ✓

3 400 ✓ ✓

Alloy 

625
PM-HIP, Forged

1 400 ✓ ✓

3 400 ✓ ✓

Alloy 

690
PM-HIP, Forged

1 400 ✓ ✓

3 400 ✓ ✓

316L SS PM-HIP, Wrought
1 400 – –

3 400 – ✓

Jiang, et al. JNM 

594 (2024) 155018

Clement, et al. 

MSE A 857 (2022) 

144058 

Wharry, et al. Data 

in Brief 48 (2023) 

109092

Wharry, et al. 

Frontiers (2023)

This Talk



Experiment Design
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TEM discs:

microstructure, 

nanoindentation

ASTM standard tensile 

bars:  yield strength, 

modulus, % elongation

Miniature CTs: fracture 
toughness

Advanced Test Reactor
Idaho National Laboratory



Alloy 625 & 690

Microstructure & Mechanical

4/8/202
4 9



Void Evolution
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625 P, 1 dpa 625 P, 3 dpa

625 F, 1 dpa 625 F, 3 dpa 690 F, 1 dpa

20 nm

690 F, 3 dpa

690 P, 1 dpa 690 P, 3 dpa



Dislocation Loop Evolution
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625 P, 1 dpa 690 P, 1 dpa625 P, 3 dpa 690 P, 3 dpa

625 F, 1 dpa 690 F, 1 dpa

50 nm

690 F, 3 dpa625 F, 3 dpa



Quantitative Loop & Void Evolution

12



Tensile Results
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5 µm

5 µm

Forged 625, 

3.84 dpa, 

380ºC

PM-HIP 625, 

3.93 dpa, 

384ºC



Grade 91 Ferritic Steel

Microstructure & Mechanical

4/8/202
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Heterogeneous Dislocation Loop Nucleation
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Heterogeneous Loop Nucleation is 
Uncommon in Ferritic Steels
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Dislocations are 
annealed while 
loops begin to 

nucleate

Dislocations get 
pinned on loops, 

forming quasi 
subgrain

Heterogeneous loop 
nucleation at 

subgrains

After subgrain sink 
is exhausted, loops 

nucleate 
homogeneously

Grade 91

1 dpa, 400ºC

Grade 91

3 dpa, 400ºC
T91, 3.96 dpa, 498ºC T91, 14.6 dpa, 460ºC HT9, 155 dpa, 443ºC

Sencer, et al. JNM (2009)Yan, et al. JNM (2021) Jiao, et al. JNM (2018)

Heterogeneous Loops
Homogeneous Loops
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Alloy Clustered Species Cluster Radius [nm] No. Density [1022 m-3] Vol Frac [%]

Cast Ni, Mn, Si, VN, VC 2.26 0.32 4.84 0.97 0.28 0.18

PM-HIP Ni, Mn, Si 1.80 0.35 4.89 2.46 0.16 0.17

Irradiation-Induced Nanoclusters and 
Segregation



Yield Drop Mechanism
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Dislocation lines 
are pinned at loops

After dislocation 
overcomes these 

obstacles, relaxation 
occurs.

Yield drop 
phenomenon

Both Cast & PM-HIP PM-HIP Only

Yield drop more pronounced in PM-
HIP because of these two factors

Si segregation to 
dislocations; Fe-Si bond is 

stronger, causing dislocation 
strengthening

Cast

PM-HIP

Si

Gu, et al. Phys Rev (2004)
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Conclusions

▪ PM-HIP Ni-based Alloys 625 and 690 and Grade 91 ferritic steel exhibit 

superior irradiation response than their cast/forged counterparts → greater 

retained ductility and strain hardening capacity due to higher resistance to 

nucleating irradiation defects

▪ PM-HIP Grade 91 exhibits unique heterogeneous loop nucleation, leading 

to yield point phenomenon → current data gap between nucleation and 

high-dose irradiation studies

▪ There are many challenges ahead before PM-HIP structural alloys can 

be fully codified… but also many opportunities!

4/8/202
4
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Metrics

▪ 1 Ph.D. and 1 M.S. degree granted; 1 Ph.D. in progress

▪ 11 peer-reviewed publications (+ at least 4 more planned/in 

preparation)

▪ 23 invited conference, seminar, or workshop presentations

▪ 13 contributed conference presentations

▪ Follow-on funding:  ~$1.5M DOE-NE CINR/Infrastructure, ~$1M NRC

▪ 3 follow-on RTEs utilizing irradiated/library specimens (+ 2 related 

RTEs and 3 pending RTEs)
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Follow-On RTEs

▪ Awarded
• 23-4703:  Understanding the origin of irradiation-induced yield drop phenomena in Grade 91 (D.P. Guillen)
• 22-4415:  Irradiation effects on deformation-induced phase transformation in Ni alloys (C.D. Clement)

• 21-4280:  Microstructure examination of irradiation effects on MMC neutron absorber (D.P. Guillen)

▪ Related
• 18-1412:  Irradiated microstructure evolution in cast compared to PM-HIP Alloy 625 (J.P. Wharry)

• 15-558:  Proton irradiations of alloys fabricated by PM-HIP (J.P. Wharry)

▪ Pending
• Understanding the remarkable strain-hardening capacity of irradiated PM-HIP 316L SS (A. Chatterjee)
• Synergetic effects of irradiation, temperature, and strain on ordering in Ni-based alloys (J.P. Wharry)

• Inter-phase localized fracture:  A new mechanism for RPV embrittlement (J.P. Wharry)
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ASME BPVC Status:  PM-HIP

Currently in the Code:

▪ ASME CC N-834 – 316L SS (nuclear)

▪ ASME CC 2770 – Grade 91 (fossil)

▪ ASME B31.1 CC approved – Grade 91

▪ ASME Section VIII CC – Div. 1 and 2 –

Duplex SS (29Cr-6.5Ni-2Mo-N)

▪ Incorporation of ASTM A988, A989, 

and B834 into ASME Section II

▪ Section II – Appendix 5

24

▪ Low alloy steel (A508 equivalency) 
Material specifications, Section III code 
case

▪ Ni-based alloys Code cases for Alloy 
600M, 625, 690, 718

▪ Longer-term needs Grade 91, 316H 
SS, Alloy 617, hardfacing alloys 
(composite PM-HIP)

Missing and Needs Qualification:



Gaps in PM-HIP Code-Qualification

▪ Material Standards – Additional ASTM specifications need to be 
developed for Ni-base alloys and low alloy steels (A508 equivalent)

▪ Environmental Data – SCC for Ni-base alloys

▪ Fracture Toughness – Needed for low alloy steels

▪ Irradiation Performance

▪ Creep – Necessary for Division V applications

▪ Low Alloy Steels – Welding acceptability needs to be confirmed

25



SA508 Low-Alloy Steel

Microstructure & Mechanical

4/8/202
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Irradiation Effects on Tensile Properties

4/8/202
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Fractography
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Initial Grain Structure Comparison

4/8/202
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PM-HIP

Forged



b


b

1 µm
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Phase Stability Under Irradiation
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Precipitate Morphological Evolution
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Precipitate Phase Evolution Under 
Irradiation

32



Dislocation Loop Evolution

4/8/202
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PM-HIP, 286ºC, 0.69 dpa PM-HIP, 388ºC, 0.97 dpa

Forged, 286ºC, 0.69 dpa Forged, 384ºC, 0.95 dpa

286ºC, 0.69 dpa ~386ºC, ~0.95 dpa

286ºC, 0.69 dpa ~386ºC, ~0.95 dpa



Nanocluster Evolution Under Irradiation
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Nanocluster Evolution Under Irradiation
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Dispersed Barrier Hardening Explains 
Structure-Property Relationship
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PM-HIP

Linear good fit, RSS 
underestimates → Loops and 

nanoclusters have 

comparable strengthening 

effect

Forged

Experimental measurements 

~halfway between linear and 

RSS → Loops are dominant 

obstacle



SA508 Materials
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Alloy C Si Mn Ni Cr Mo V P S Fe

PM-HIP 0.01 0.21 1.39 0.79 0.18 0.37 - 0.002 0.005 Bal.

Forged 0.02 0.31 0.46 0.50 0.21 0.26 0.01 0.003 0.007 Bal.

ASTM <0.25 0.15-0.40 1.20-1.50 0.40-1.00 <0.25 0.45-0.60 <0.05 <0.025 <0.025 Bal.

HIP: hr

Heat Treatments (Both PM-HIP and Forged):
• hr, water quench
• hr, water quench
• hr, air cooling



316L Stainless Steel

Mechanical Behavior
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Tensile Testing & Nanoindentation
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