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• Goal: In situ data from LTRs
– Assist in qualification of accident 

tolerant fuel or burnup extension

• Instrument leads complicate 
fuel handling

• Wireless transmission would 
be extremely advantageous
– Encouraging results from MITR testing

– Need to demonstrate at high 
neutron fluence under relevant fuel 
operating conditions

Hore-Lacy, Ian. (2016). Uranium for 
Nuclear Power - Resources, Mining and 
Transformation to Fuel - 13.1.1 Fuel 
Fabrication Service Suppliers. Elsevier. 
https://app.knovel.com/hotlink/pdf/id:
kt010W3991/uranium-nuclear-
power/fuel-fabrication-service
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Motivation: Online monitoring of fuel rod temperature 
and pressure without requiring sensor penetrations
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WIRE-21: HFIR’s most highly instrumented experiment  

• Primary goal: Irradiate WEC’s 
wireless temperature & 
pressure sensors at LWR 
temperatures

• Broader goal: Develop a 
platform for economical, 
accelerated testing of 
advanced sensors

– Thermocouples (14)

– Distributed fiber optic 
temperature sensors (8)

– Self-powered neutron 
detectors (4)

– Passive SiC temperature 
monitors (38) and flux wires (4)

• Completed 3 HFIR cycles

– ~3×1021 nfast/cm2

– ~6×1021 nthermal/cm2
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WEC’s inductively coupled sensor technology

• Wireless transmission to passive circuit with varying resistance (RTD on fuel 
surrogate) or inductance (core driven by metal bellows)

• Reference inductors account for effects of radiation, inductor temperatures

• Similar fast neutron flux for both sensors (~1.6–3.3×1014 n/cm2/s)

• Thermal neutron flux much larger in temperature sensor vs. pressure sensor

WEC 
pressure 
sensor

Top 
cover 

installed
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Experiment 
insertion into 
HFIR

Storage prior to insertionHoisting

Insertion into HFIRHFIR vessel head with 
view of reactor core
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Operation

• 3 HFIR cycles completed, 75 
effective full power days

• Peak neutron fluence

– Fast (E>0.1 MeV): 3×1021 n/cm2

– Thermal (E<1 eV): 6×1021 n/cm2

• Achieved target of ~300–400°C

– All 10 sheathed TCs survived

– 2 exposed TCs inside WEC sensors 
failed

– Lower temperatures above active 
fueled region (>25 cm)

– Initial increases thought to be caused 
by compaction of graphite holders
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WEC’s sensor response during 1st HFIR cycle

• Sensors responded 
during ascent to full 
power

• Response not 
exactly as expected 
but stabilized at 
steady state
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WEC’s response during pressure/temperature transients

• Signal did not track 
exactly with 
thermocouple

• Clearly some 
hysteresis in both 
sensor signals

– Temperature: 2 to 6.5 V

– Pressure: 5.5 to 4.5 V

• Pressure sensor did 
not respond at all 
to changes in 
pressure
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Temperature transient during 2nd HFIR cycle

• Signals dropped 
relatively quickly 
during the first 
cycle

– 6.5 V after 1st cycle 
transient to 0.35 V

• Sensor still 
responded as 
expected to a 
temperature 
transient 
performed in the 
2nd cycle
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WEC Sensor 
Inductance 
Evolutions

TxRx2 Rx1

Tx Rx2Rx1

Temperature sensor (TS)

Pressure sensor (PS)

~10X 
reduction

Negligible recovery after HFIR shutdown

Some recovery after 
HFIR shutdown

Unexplained recovery well 
after HFIR shutdown
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WEC Sensor Inductance Evolutions

~10X reductions in inductance within 2 days, with 
minimal (~10%) changes in resistance

• Not observed in previous MITR tests at lower flux

• More significant in inductors with higher thermal flux

• Similar fast flux in all inductors

• Recovery after reactor scram only observed in 2 
inductors tested at lower thermal flux

• All except Rx1 in PS (~25 cm, ~150°C) ran at ~200–
300°C during initial drop in inductance

– Temperature effects should also recover
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Fiber Description Gratings

1 Pure SiO2 core, F-doped SiO2 cladding

N/A

2
Ge-doped SiO2 core, pure SiO2

cladding

3
F-doped SiO2 core and cladding with 

Type II gratings

Type II,
~1% reflectivity,

~65 mm spacing4

5
Pure SiO2 core, F-doped SiO2 cladding 

with Type II gratings
Type II, ~0.5% reflectivity,

~10 mm spacing

6
Ge-doped SiO2 core, pure SiO2

cladding with Type I gratings
Type I, 

<0.1% reflectivity, ~10 mm spacing

7
Hollow core photonic

crystal fiber
N/A

8

Goal is to understand 
differences in signal 
attenuation and drift 
at high neutron 
fluence

• Fibers with and 
without gratings

• Singlemode and 
hollow core fibers

• Varying fiber 
dopants (F, Ge)

• Varying grating 
types (Type I and II)

Fiber test matrix
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Type II FBGs in F-
doped fiber

Ge-doped fiber

F-doped fiber

Measured spectral shifts (temperatures) deviate from 
thermal + compaction models at high neutron fluence 

(suspected fiber coating effect)

C.M. Petrie and D.C. Sweeney, “Enhanced backscatter and unsaturated blue wavelength shifts in F -doped fused 
silica optical fibers exposed to extreme neutron radiat ion damage”, J. Non-Cryst . Solids 615 (2023) 122441 
doi.org/10.1016/j.jnoncrysol.2023.122441

Drastic differences in reflected signal 
amplitudes at high neutron fluence

Results: Good and Bad News for F-doped Fibers
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Core dopants and FBG 
type have strong effect 
on FBG stability

• Type I FBGs in Ge-

doped core fiber

erased within 2 days of 

irradiation (not shown)

• Type II FBGs in pure 

SiO2 core fiber 

attenuated >40 dB 

during first cycle

• Type II FBGs in F-doped 

core fiber survived 

entire experiment but 

still drifted significantly

D.C. Sweeney et al., “Analysis of WIRE-
21 SPND and Optical Fiber Sensor 
Measurements”, ORNL/TM-
2023/2024(2023) 
doi.org/10.2172/1997703

Results: Gratings Type II FBGs in pure 

SiO2 core fiber

Type II FBGs 

in F-doped 
SiO2 core 

fiber

Type I FBGs in Ge-doped 

SiO2 core fiber

https://doi.org/10.2172/1997703
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Summary
Novelty

• Most highly instrumented experiment ever conducted in HFIR

• WEC’s wireless sensor exposure equivalent to ~1 PWR operating cycle

• Fiber optics tested under highest neutron flux ever reported

• 1st ever testing of SPNDs in HFIR

Results

• WEC sensors performed as expected during installation and startup

– Change in inductance, due to degradation in permeability of ferromagnetic rod, 
during the first few hours of testing was greater than expected, reducing coupling 
sensitivity between transceiver and sensor

– Not observed in MITR or Halden Reactor (lower neutron flux)

– Plan to investigate potential degradation mechanisms (transmutation vs. 
displacement damage)

• Initial fiber optic results show very strong signals but prohibitively large drift

– Fiber transmission and FBG performance strongly depend on fiber dopants

– Ongoing ASI efforts to understand effects of fiber coating on observed drift

• SPND and thermocouple data will be useful to compare with passive 
measurements (SiC temperature monitors, activation wires) under ASI
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Thank You

Questions?
Chris Petrie, petriecm@ornl.gov

Chris Petrie
Group Leader, ORNL

petriecm@ornl.gov
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